
DOWNLOAD INFORMATION AND DOCUMENTATION

Website: http://panda.dei.polimi.it

Mailing List: panda-info@elet.polimi.it

Bambu: A Free Framework for the

High-Level Synthesis of Complex Applications

Christian Pilato and Fabrizio Ferrandi

Politecnico di Milano – Dipartimento di Elettronica ed Informazione – Milano (Italy)

4. NETLIST GENERATION

Finally, the global RTL structural description is created by connecting all the modules and the

memory interfaces in two master/slave chains:

• the master one produces and propagates the requests;

• the slave one provides the data to the module that performed the request.

• the global external interface closes the chains by determining if the address refers

to an memory internal or external to the core.

Only one memory location is active at the same time and thus only one interface will

write the data on the corresponding bus, while the others will simply forward them.

• no three-states are required to manage the accesses to the bus.

Bambu interfaces with the FloPoCo library for the generation of floating-point units.

MEMORY ALLOCATION AND ARCHITECTURE

The memory allocation determines where to allocate the different

variables with respect to each function:

• internal variables are allocated to dedicated heterogeneous

memories, internal to the datapath and directly accessed by

the functional units.

• external variables (either external memory or outermost

functions) are accessed by a memory interface.

3. HIGH-LEVEL SYNTHESIS OF THE FUNCTIONS

We perform the High-Level Synthesis of each function separately

• Custom mux-based architectures based on the dimension of

the data types, aiming at reducing the number of flip-flops

and bit-level multiplexers.

• Modular structure, easy to be extended with new algorithms

and methodologies.

• Possibility to customize any of the algorithms.

The technology-aware characterization of the library allows to

perform operation chaining and correct enabling of register

writing for multi-cycling units.

2. FRONTEND ANALYSIS

The analysis of the intermediate representation allows to:

• create the call graph of the entire application;

• create the graph-based representation of each function, after GCC optimizations;

• identify variables, function parameters, memory accesses, data types, ...

1. COMPILING THE SOURCE CODE WITH THE GCC COMPILER

Bambu has a compiler-based interface to interface with the GNU C Compiler (GCC) ver. 4.5 and

build the internal representation in SSA form of the initial C code.

INTRODUCTION AND MAIN OBJECTIVES

Bambu is a free framework to assist the designer during the high-level synthesis of complex applications, aiming at supporting most of the C constructs (e.g., function calls and sharing of the modules,

pointer arithmetic and dynamic resolution of memory accesses, accesses to array and structs, parameter passing either by reference or copy, …). Bambu is written in C++ and it can be freely

downloaded under GPL license.

data-path resources

Memory Interface

d
ata_

r

d
ata_

w

ad
d

r

size

d
o

n
e

L
O

A
D

S
T

O
R

E

M_in_LOAD

M_in_STORE

M_in_addr

M_in_data_w

M_in_size

M_o_LOAD

M_o_STORE

M_o_addr

M_o_size

M_Ready

M_in_data_r

M_o_data_w

int arr[2] = {1,2};

void bar(int* a, int b, int *c)

{

 int d;

 *c = 0;

 for (d = 0; d < b; d++)

 if (*(a+d) > *c) *c = a[d];

}

void foo(int a, int* e)

{

 int max = 0;

 bar(arr, 2, &max);

 *e = a + max;

}

@1: int arr[2] = {1,2};

void bar(int* a, int b, int *c){ //@2 (@3, @4, @5)

@6: int d;

@7: *c = 0;

@8: for (d = 0; d < b; d++){

@10: int tmp_1 = *(a+d);

@11: int tmp_2 = *c;

@12: if (tmp_1 > tmp_2){

@14: int tmp_3 = *(a+d);

@15: *c = tmp_3;

@16: }

@17: }

}

void foo(int a, int* e) //@18 (@19, @20){

@21: int max, max_2, max_1 = 0;

@22: max = max_1;

@23: bar(arr, 2, &max);

@24: max_2 = max;

@25: *e = a + max_2;

}

Restructuring of the

code to explicit

memory accesses.

Variables given by reference

to the sub-functions require a

memory location.

@1, @19,

@22

@2, @5

foo

bar

@1, @22

Arrays and pointer variables

refer to memory by definition.

Call Graph with

memory variables

Access to external memories:

it is connected also to the other

interfaces in order to compose

a chain and allow the dynamic

resolution of the addresses.

Access to internal memories: we

adopt a chip-select logic to

determine if the input address is

addressing the memory or not.

Example of active signals when function bar requires an access to arr.

Function Operation Variables

bar

@7 @5

@10 @2

@11 @5

@14 @2

@15 @5

foo

@22 @21

@23 @1, @21

@24 @21

@25 @20

6. TEST-BENCH GENERATION

Generation of test-benches starting from an XML description of the data-set.

<?xml version="1.0"?>

<function name=“bar”>

<testbench a=“1,3,2,5” b=“4”/> #possibility to test the function bar with different arrays; e is not initialized to any value;

</function>

Bambu performs:

• the generation of expected values based on the software execution

• the generation of HDL test-bench taking the memory allocation into account

• comparison of the simulation results to verify the execution correctness

5. GENERATION OF SYNTHESIS AND SIMULATION SCRIPTS

Automatic generation of synthesis scripts based on XML configuration for different toolflows:

• FPGA: Xilinx ISE, Altera Quartus

• ASIC: Synopsys Design Compiler

and simulation tools:

• Mentor Modelsim, Xilinx ISIM and Verilog Icarus

This can be also adopted for the characterization of the resource library to have technology-aware

details during the High-Level Synthesis.

3

Frontend

analysis

(fun1)

Frontend

analysis

(funN)

...

HLS

(fun1)

HLS

(funN)

...

Netlist

Generation

Module

Library

XML

addr's

HDL

description

Call graph + CDFG +

memory info

1

2

4

 wrapping GIMPLE Analysis

Call graph

Memory Allocation

Initial C

code

Resource

Library

Synthesis Script

Generation

5

Testbench

Generation

6

Module

Characterization

Synthesis

Scripts

config

passes

constraints

CONTACTS

Fabrizio Ferrandi, Associate Professor, Politecnico di Milano, DEI, ferrandi@elet.polimi.it

Christian Pilato, Post-doc Research Assistant, Politecnico di Milano, DEI, pilato@elet.polimi.it

The variables are allocated in the minimal

scope for them. For example, considering

@40, it will be allocated in f1.

B

HLS Optimizations

constraints

Scheduling STG Generation

Resource Binding
Interconnection

Computation

Controller Synthesis Datapath Synthesis

A

Memory

Initialization

Resource

Library

Resource Allocation

C

Script Generation Module EvaluationTool config

Library Evaluation The resulting memory interface has

to dynamically resolve the base

address and the proper offset, if

any.

a

A
d

d
re

ss

C
o

m
p

u
ta

ti
o

nbase

offset

'd4
size

Reg(d)

'd0

c

data-path resources

Internal Memory

d
ata_

r

d
ata_

w

o
ffset

clo
ck

L
O

A
D

S
T

O
R

E

S_in_LOAD

S_in_STORE

S_in_addr

S_in_data_r

S_in_size

S_o_Ready

S_o_data_r

S_in_Ready

chip select

addr

MEMORY

S_in_data_w

Memory

Interface

addr

	PosterUB_DATE.vsd
	Pagina 1

