
Modern High-Level Synthesis for Complex Data Science Applications

Compiler Based Optimizations, Tuning and
Customization of Generated Accelerators

Michele Fiorito

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria
michele.fiorito@polimi.it

Design, Automation and Test in

Europe Conference
March 21, 2022

March 21, 2022

2
Outline

❑ Accelerator interface

❑ Front-end target-independent optimizations

❑Middle-end hardware-oriented optimizations

❑ Bambu HLS algorithms

❑ Integer and floating-point math support

March 21, 2022

3

Accelerator Interface

Reset signal

❑ Internal status of accelerator can be reset

Accelerator exposes a reset signal

❑ Register reset type:

no (default)

async

sync

❑ Reset level:

low (default)

high

❑ Example:

--reset-type=sync –-reset-level=high

March 21, 2022

4

Accelerator Interface

Registered inputs

❑ A dedicated port is created for scalar parameters
of each module function

❑ Generated modules expect stable inputs

If inputs are not stable, they can be registered

❑ Registered inputs:

auto – (default) inputs are registered only for

shared functions

top – inputs are registered for top interface
and shared functions

yes

no

--registered-inputs=<value>

March 21, 2022

5

Accelerator Interface

Registered inputs

Accelerator

internal

data-path

Combinatorial
logic

Combinatorial
logic

Inputs Outputs

Registers

Timing not considered
by the synthesis tool

Unregistered top-level interface:

❑ Unfaithful global timing computation

❑ Scheduling suffers from unregistered logic

❑ Inaccurate timing estimation of logic

between I/O and registers

March 21, 2022

6

Accelerator Interface

Registered inputs

Accelerator

internal

data-path

Combinatorial
logic

Combinatorial
logic

Inputs Outputs

Registered top-level interface:

❑ Accurate timing estimation

❑ Better operations’ scheduling

❑ More stable interface

Timing included in clock
period computation

March 21, 2022

7

Accelerator Interface

FSM-encoding

❑ Different types of encoding can be used in Finite

State Machine

one-hot (default) – best for performance

binary – best for area

--fsm-encoding=<value>

March 21, 2022

8
Accelerator design optimizations

❑ Performance and area of the generated accelerators
can be improved by tuning the design flow

GCC/CLANG target-independent optimizations

Bambu IR hardware-oriented optimizations

HLS algorithms (allocation, scheduling, binding)

❑ Best design flow for all accelerators does not exist

Trade off between area and performance

Effects of the single optimizations can be different
on different input applications

❑ Default optimization flow:

Balanced area/performance trade-off

March 21, 2022

9

Front-end optimizations

GCC/CLANG optimizations

❑ Target-independent optimizations only

❑ User can tune this part of the flow:

Selecting optimization level:

Enabling/disabling single optimization:

Tuning parameters: --param

-O0 or –O1 or –O2 or –O3 or -Os

--param <name>=<value>

-f<optimization> -fno-<optimization>

March 21, 2022

10

❑ Bambu defaults are used changing front-end
compiler optimization level only

❑ -O3 is not necessarily the best choice

Can improve performances

Can increment area

Optimization
level

Clock cycles LUTs

O0 15764 11675

O1 7892 11052

O2 4679 10276

O3 3854 15679

O3 vectorize 3816 38553

O3 all inline 1327 13550

Front-end optimizations

Impact of global optimization level

March 21, 2022

11

Middle-end hardware optimizations

Bambu IR Optimizations

❑ Hardware-oriented optimizations

❑Many optimization techniques:

Single instruction optimizations

Multiple instruction optimizations

Restructuring of Control Flow Graph

Rewriting IR

❑ Same optimization can be applied many times

Fixed point iteration optimization flow

March 21, 2022

12

Middle-end hardware optimizations

Bambu IR Analysis

❑ Collects information over IR to be used by othe
optimizations and HLS back-end

❑ Data flow analysis

Scalar: based on SSA

Aggregates (i.e. Front-end+Bambu alias analysis)

❑ Graphs Computation

Call Graph, CFG, DFG, …

❑ Loops identification

❑ Bit Value Analysis

Compute for each SSA variable which bit are
used, which are fixed, which are useless

❑ Range Analysis

March 21, 2022

13

Middle-end hardware optimizations

Single Instruction Optimization

❑ IR lowering – make single instructions more
suitable to be implemented on FPGA

Expansion of multiplication by constant

Expansion of division by constant

Etc.

❑ Bit Value Optimization – exploit information from
previous IR analyses to make bitwise optimizations

Shrink operations to the only significant bits

March 21, 2022

14

Middle-end hardware optimizations

Multiple Instruction Optimization

❑ Common Subexpression Elimination

❑ Dead Code Elimination

❑ Extract pattern (e.g., three input sum)

❑ LUT transformations

Merging multiple Boolean operations into a

single LUT-based operation

❑ Conditional Expression Restructuring

❑ Commutative Expression Restructuring

March 21, 2022

15

Middle-end hardware optimizations

Restructuring of Control Flow Graph

❑Merging of conditional branch

Creation of multiple target branch

❑ Basic Block Manipulation

Remove (empty, dead, …)

Split

Merge

❑ Code motion

❑ Speculation

March 21, 2022

16

Middle-end hardware optimizations

Rewriting IR

❑ Struct assignment

Replaced with memcpy call

❑ Floating point operations

Replaced with function calls

❑ Integer divisions

Replaced with function calls

March 21, 2022

17

Bambu HLS algorithms

System of Difference Constraints

❑ Global scheduling based on ILP formulation

❑ Results are exploited to perform

Speculation

Code Motion

+ Improve performances of accelerators

- Potentially increment area of accelerators

- Increase High Level Synthesis time

--speculative-sdc-scheduling

March 21, 2022

18

18
Bambu HLS algorithms

Example of scheduling optimization

March 21, 2022

19
Experimental setups

❑ Predefined optimizations’ set

BAMBU-AREA: optimized for area

BAMBU-PERFORMANCE: optimized for performances

BAMBU-BALANCED: optimized for trade-off
area/performance

BAMBU-AREA-MP, BAMBU-PERFORMANCE-MP,
BAMBU-BALANCED-MP: enable support to true dual
port memories

Default: BAMBU-BALANCED-MP

--experimental-setup=<setup>

March 21, 2022

20
Resource Constraints

❑ Bambu assumes infinite resources on target

Produced solutions may not fit in the target
device

❑ Area of generated solutions can be indirectly
controlled by means of constraints

❑ Function-scope constraints on number of
functional units

E.g.: fix the number of available multiplier in
each function

❑ Constraints are set by means of XML file

March 21, 2022

21

Resource Constraints

Example of constraints file

<?xml version="1.0"?>

<constraints>

<HLS_constraints>

<tech_constraints fu_name="mult_expr_FU"

fu_library="STD_FU" n="8" />

</HLS_constraints>

</constraints>

March 21, 2022

23

Math synthesis support

Integer Division Algorithms

❑ User can control integer division implementation:

❑ Available implementations:

none: HDL-based pipelined restoring division

nr1 (default): C-based non-restoring division

with unrolling factor equal to 1

nr2: C-based non-restoring division with

unrolling factor equal to 2

NR: C-based Newton-Raphson division

as: C-based align divisor shift dividend method

--hls-div=<implementation>

March 21, 2022

24

Math synthesis support

Floating point support

❑ Possible ways of implementing floating point ops:

Softfloat (default): customized faithfully
rounded (nearest even) implementation

Subnormals: subnormal numbers support can
be enabled through

Softfloat GCC: GCC soft-based implementation

FloPoCo generated VHDL modules

--fp-subnormal

--soft-float

--soft-fp

--flopoco

March 21, 2022

25

Math synthesis support

Libm versions

❑ HLS flow exploited to generate hardware

implementation of soft-defined libm functions

❑ Two different versions of libm are available

1. Faithfully rounded libm (default)

2. Classical libm built integrating existing libm

source code from glibc, newlib, uclibc and musl

libraries.

• Worse performances and area

March 21, 2022

26
Hands-on time

Switch to Colab Notebook to test some of bambu optimizations

March 21, 2022

27
First example – ADPCM

Benchmark CYCLES HLS_execution_time

GCC49:adpcm_O0 33429 23,05

GCC49:adpcm_O1 24547 18,72

GCC49:adpcm_O2 24043 43,26

GCC49:adpcm_O3 10429 76,45

GCC49:adpcm_O3_inline 7503 99,58

GCC49:adpcm_O3_vectorize 6995 49,31

GCC49:adpcm_Os 24847 25,21

March 21, 2022

28
Second example – ADPCM

Benchmark CYCLES HLS_execution_time

GCC49:adpcm_O0_sdc 33479 64,38

GCC49:adpcm_O1_sdc 24297 57,09

GCC49:adpcm_O2_sdc 22863 83,53

GCC49:adpcm_O3_sdc 9149 175,93

GCC49:adpcm_O3_inline_sdc 5356 210,62

GCC49:adpcm_O3_vectorize_sdc 6135 110,81

GCC49:adpcm_Os_sdc 24397 68,45

March 21, 2022

29
Third example – Integer Division

Benchmark CYCLES HLS_execution_time

GCC49:dfdiv_none 1777 37,5

GCC49:dfdiv_nr1 1849 41,18

GCC49:dfdiv_nr2 1105 43,12

GCC49:dfdiv_NR 825 44,92

GCC49:dfdiv_as 841 30,14

March 21, 2022

30
Question time

Research supported by HERMES project
HERMES project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement N° 101004203

