y POLITECNICO DI MILANO

Design, Automation and Test in

Europe Conference
March 21, 2022

i s o

Modern High-Level Synthesis for Complex Data Science Applications

Compiler Based Optimizations, Tuning and
Customization of Generated Accelerators

Michele Fiorito

Politecnico di Milano

Dipartimento di Elettronica, Informazione e Bioingegneria
michele.fiorito@polimi.it

Outline

 Accelerator interface

A Front-end target-independent optimizations
 Middle-end hardware-oriented optimizations
d Bambu HLS algorithms

d Integer and floating-point math support

March 21, 2022 - I POLITECNICO DI MILANO

Accelerator Interface
Reset signal

A Internal status of accelerator can be reset

» Accelerator exposes a reset signal
O Register reset type:

» NO (default)
» async
» SYNC
 Reset level:
» low (default)
» high
d Example:

—-—-reset-type=sync —-reset-level=high

POLITECNICO DI MILANO

S
Accelerator Interface

Registered inputs 4

J A dedicated port is created for scalar parameters
of each module function

d Generated modules expect stable inputs
» If inputs are not stable, they can be registered
 Registered inputs:

» auto — (default) inputs are registered only for
shared functions

» top - inputs are registered for top interface
and shared functions

» yes
» NO

--registered-inputs=<value>

March 21, 2022 - I POLITECNICO DI MILANO

Accelerator Interface

Registered inputs

Unregistered top-level interface:

O Unfaithful global timing computation

O Scheduling suffers from unregistered logic

a Inaccurate timing estimation of logic

between I/O and registers

Inputs >

Combinatorial
logic

)

Accelerator
internal
data-path

\

/ Registers

Coml|:>|n_ator|al Outputs
ogic ::>

\ Timing not considered /

by the synthesis tool

POLITECNICO DI MILANO

Accelerator Interface

Registered inputs

Registered top-level interface:

O Accurate timing estimation

O Better operations’ scheduling

0 More stable interface

Inputs >

Combinatorial
logic

)

|

Accelerator
internal
data-path

\

Combinatorial m
logic

|

\ Timing included in clock /

period computation

POLITECNICO DI MILANO

Accelerator Interface

FSM-encoding 7

d Different types of encoding can be used in Finite
State Machine

» one-hot (default) — best for performance

» binary — best for area

—-—fsm-encoding=<value>

March 21, 2022 - I POLITECNICO DI MILANO

Accelerator design optimizations

d Performance and area of the generated accelerators
can be improved by tuning the design flow

» GCC/CLANG target-independent optimizations
» Bambu IR hardware-oriented optimizations
» HLS algorithms (allocation, scheduling, binding)

 Best design flow for all accelerators does not exist
» Trade off between area and performance

» Effects of the single optimizations can be different
on different input applications

d Default optimization flow:
» Balanced area/performance trade-off

March 21, 2022 - I POLITECNICO DI MILANO

Front-end optimizations

GCC/CLANG optimizations 9

d Target-independent optimizations only
 User can tune this part of the flow:

» Selecting optimization level:

-00 or -01 or -02 or -03 or -0Os

» Enabling/disabling single optimization:

—-f<optimization> -fno-<optimization>

» Tuning parameters: --param

——param <name>=<value>

March 21, 2022 - I POLITECNICO DI MILANO

Front-end optimizations
Impact of global optimization level

10

d Bambu defaults are used changing front-end

compiler optimization level only

Optimization

o]0 15764
01 7892
02 4679
03 3854
O3 vectorize 3816
O3 all inline 1327

11675
11052
10276
15679
38553
13550

[-O3 is not necessarily the best choice

» Can improve performances
» Can increment area

POLITECNICO DI MILANO

Middle-end hardware optimizations
Bambu IR Optimizations 11

[Hardware-oriented optimizations

O Many optimization techniques:
» Single instruction optimizations
» Multiple instruction optimizations

» Restructuring of Control Flow Graph
» Rewriting IR

d Same optimization can be applied many times
» Fixed point iteration optimization flow

March 21, 2022 - I POLITECNICO DI MILANO

Middle-end hardware optimizations

Bambu IR Analysis 12

 Collects information over IR to be used by othe
optimizations and HLS back-end

d Data flow analysis
» Scalar: based on SSA
» Aggregates (i.e. Front-end+Bambu alias analysis)
d Graphs Computation
» Call Graph, CFG, DFG, ...
 Loops identification
4 Bit Value Analysis

» Compute for each SSA variable which bit are
used, which are fixed, which are useless

d Range Analysis

March 21, 2022 - I POLITECNICO DI MILANO

Middle-end hardware optimizations
Single Instruction Optimization 13

A IR lowering — make single instructions more
suitable to be implemented on FPGA

» Expansion of multiplication by constant
» Expansion of division by constant
» Etc.

d Bit Value Optimization - exploit information from
previous IR analyses to make bitwise optimizations

» Shrink operations to the only significant bits

March 21, 2022 - I POLITECNICO DI MILANO

Middle-end hardware optimizations
Multiple Instruction Optimization 14

d Common Subexpression Elimination

0 Dead Code Elimination

A Extract pattern (e.g., three input sum)
A LUT transformations

» Merging multiple Boolean operations into a

single LUT-based operation
d Conditional Expression Restructuring

d Commutative Expression Restructuring

March 21, 2022 - I POLITECNICO DI MILANO

Middle-end hardware optimizations

Restructuring of Control Flow Graph 15

d Merging of conditional branch

» Creation of multiple target branch
d Basic Block Manipulation

» Remove (empty, dead, ...)

» Split

» Merge
0 Code motion

d Speculation

March 21, 2022 - I POLITECNICO DI MILANO

Middle-end hardware optimizations

Rewriting IR

16

 Struct assignment

» Replaced with memcpy call
A Floating point operations

» Replaced with function calls
A Integer divisions

» Replaced with function calls

POLITECNICO DI MILANO

Bambu HLS algorithms
System of Difference Constraints 17

d Global scheduling based on ILP formulation
 Results are exploited to perform
» Speculation
» Code Motion
+ Improve performances of accelerators
- Potentially increment area of accelerators

- Increase High Level Synthesis time

—-—-speculative-sdc-scheduling

March 21, 2022 - I POLITECNICO DI MILANO

Bambu HLS algorithms
Example of scheduling optimization 18
BB1 BB,

BBy

BBj3

7/

\ 4
@835
I
|
I
|
I
4

BBy

POLITECNICO DI MILANO

Experimental setups 19

d Predefined optimizations’ set

——experimental-setup=<setup>

BAMBU-AREA: optimized for area
BAMBU-PERFORMANCE: optimized for performances

BAMBU-BALANCED: optimized for trade-off
area/performance

BAMBU-AREA-MP, BAMBU-PERFORMANCE-MP,
BAMBU-BALANCED-MP: enable support to true dual
port memories

Default: BAMBU-BALANCED-MP

March 21, 2022 - I POLITECNICO DI MILANO

Resource Constraints -0

d Bambu assumes infinite resources on target

» Produced solutions may not fit in the target
device

 Area of generated solutions can be indirectly
controlled by means of constraints

 Function-scope constraints on number of
functional units

» E.g.: fix the number of available multiplier in
each function

 Constraints are set by means of XML file

March 21, 2022 - I POLITECNICO DI MILANO

Resource Constraints

Example of constraints file 21

<?xml version="1.0"7>
<constraints>
<HLS constraints>
<tech constraints fu name="mult expr FU"
fu library="STD FU" n="8" />
</HLS_constraints>
</constraints>

March 21, 2022 - I POLITECNICO DI MILANO

Math synthesis support
Integer Division Algorithms 23

d User can control integer division implementation:

—-hls-div=<implementation>

d Available implementations:
» none: HDL-based pipelined restoring division

» nrl (default): C-based non-restoring division
with unrolling factor equal to 1

» nr2: C-based non-restoring division with
unrolling factor equal to 2

» NR: C-based Newton-Raphson division
» as: C-based align divisor shift dividend method

March 21, 2022 - I POLITECNICO DI MILANO

Math synthesis support
Floating point support 24

 Possible ways of implementing floating point ops:

» Softfloat (default): customized faithfully
rounded (nearest even) implementation

-—-soft-float

» Subnormals: subnormal numbers support can
be enabled through

—-—fp-subnormal

» Softfloat GCC: GCC soft-based implementation

—-—soft-fp

» FloPoCo generated VHDL modules

—-—flopoco

March 21, 2022 - I POLITECNICO DI MILANO

Math synthesis support
Libm versions 25

d HLS flow exploited to generate hardware

implementation of soft-defined libm functions

O Two different versions of libm are available
1. Faithfully rounded libm (default)

2. Classical libm built integrating existing libm
source code from glibc, newlib, uclibc and musl

libraries.

e Worse performances and area

March 21, 2022 - I POLITECNICO DI MILANO

Hands-on time 26

Switch to Colab Notebook to test some of bambu optimizations

March 21, 2022 - I POLITECNICO DI MILANO

First example - ADPCM

27
Benchmark n CYCLES ﬂ HLS execution_time Bk
GCC49:adpcm_00 33429 23,05
GCC49:adpcm_0O1 24547 18,72
GCC49:adpcm_02 24043 43,26
GCC49:adpcm_03 10429 76,45
GCC49:adpcm_0O3 inline 7503 99,58
GCC49:adpcm_0O3 vectorize 6995 49,31
GCC49:adpcm_Os 24847 25,21

POLITECNICO DI MILANO

Second example - ADPCM

Benchmark

GCC49:adpcm_00 sdc 33479
GCC49:adpcm_0O1 sdc 24297
GCC49:adpcm_02 sdc 22863
GCC49:adpcm_03 sdc 9149
GCC49:adpcm_03 inline_sdc 5356
GCC49:adpcm_03 vectorize sdc 6135
GCC49:adpcm_0Os_sdc 24397

ﬂ CYCLES ﬂ HLS _execution_time [

64,38
57,09
83,53
175,93
210,62
110,81
68,45

POLITECNICO DI MILANO

Third example — Integer Division 59

Benchmark ﬂ CYCLES ﬂ HLS execution_time Ry

GCC49:dfdiv_none 1777 37,5
GCC49:dfdiv_nr1 1849 41,18
GCC49:dfdiv_nr2 1105 43,12
GCC49:dfdiv_NR 825 44,92
GCC49:dfdiv_as 841 30,14

March 21, 2022 - I POLITECNICO DI MILANO

Question time 30

o’

| A—

Research supported by HERMES project S
HERMES project has received funding from the European Union’s Horizon 2020 research and innovation [
programme under grant agreement N° 101004203

*
*
*

* 5 *

March 21, 2022 - I POLITECNICO DI MILANO

