
Enabling the High Level

Synthesis of Data Analytics

Accelerators
MARCO MINUTOLI, VITO GIOVANNI CASTELLANA, ANTONINO TUMEO

PACIFIC NORTHWEST NATIONAL LABORATORY

RICHLAND, WA, USA

MARCO LATTUADA

ST MICROELECTRONICS

LEGNANO, ITALY

FABRIZIO FERRANDI

POLITECNICO DI MILANO

MILANO, ITALY

March 21, 2022 1

New generation of irregular HPC applications

Complex Networks

Community Detection

Bioinformatics

Knowledge Discovery

Graph Databases

Language Understanding Pattern Recognition

Big Science

March 21, 2022 2

Massive Social Networks

Statistics
More than 1 billion active users, even more objects

Average user has 130 friends and connected to 80 community pages, groups, and events

Graph characteristics
Topology: Interaction graph is low-diameter and has no good separators

Irregularity: Communities are not uniform in size

Overlap: individuals are members of one or more communities

Sample queries:
Allegiance switching: identify entities that switch communities.

Community structure: identify the genesis and dissipation of communities

Phase change: identify significant change in the network structure

surpassed 1 billion active users

March 21, 2022 3

http://www.new.facebook.com/album.php?profile&id=20531316728

Definition of Irregular Applications

Irregularity in data structures

Pointer- or linked-list based data structures such as graphs, unbalanced

trees, unstructured grids

Very poor spatial and temporal locality

Unpredictable data accesses

Fine grained data accesses

Irregularity in control

Divergent branches

If (vertex==x) z; else k

Irregularity in communication patterns

Unpredictable and fine grained communication

A consequence of irregularity in data structures and in control

March 21, 2022 4

Additional Characteristics

Very large datasets

Way more than what is currently available for single cluster nodes

Very difficult to partition in a balanced way

Large amounts of parallelism (e.g., each vertex, each edge in the

graph)

Usually, high synchronization intensity

Concurrent activities accessing the same elements of the data structures

Datasets may be dynamically updated

March 21, 2022 5

Self-reinforcing Trend of FLOP-computing

The HPC community builds systems for scientific simulations.

We need systems for data analysis, discovery, and inferencing.

Application Trends

• High computational density

• Local data access

• Regular, partitionable structures

Architecture Trends

• Complex arithmetic units

• Deep cache hierarchies

• Low interconnect bandwidth

March 21, 2022 6

Desirable System Features for Irregular

Applications

March 21, 2022 7

Multithreading

Tolerate, rather than reduce (with caches/locality) data access latencies

Global Address Space

No necessity to explicitly partition the dataset

Fine-grained synchronization

May need to lock a single memory word

Optimization: aggregation of fine-grained data accesses

Exemplar Irregular & Data Analytics

Application: Graph Databases

March 21, 2022 8

Promising solution to store large and heterogeneous datasets of these

application fields

Organize data in form of triples

Subject-predicate-object

Following the Resource Description Framework (RDF)

Set of triples represent a labeled, directed multigraph

Queried through languages such as SPARQL

Fundamental operation is graph matching

Graph Engine for Multithreaded Systems

(GEMS)

March 21, 2022 9

A software stack that implements a

RDF (graph) database on a

homogeneous commodity cluster

Uses graph methods

Converts SPARQL to graph

pattern matching routines in C++

Employs a custom Runtime (GMT

– Global Memory and Threading)

which provides:

Lightweight software

multithreading

Message aggregation

Global address space

[V.G. Castellana, A. Morari, J. Weaver, A. Tumeo, D. Haglin, O. Villa, J.
Feo:In-Memory Graph Databases for Web-Scale Data. IEEE Computer
48(3): 24-35 (2015)]

Query example

March 21, 2022 10

Return the names of all persons owning at least two cars, of which at

least one is a SUV

Source Code Example

March 21, 2022 11

Can we use FPGAs to accelerate Data

Analytics and Irregular Applications?

March 21, 2022 12

FPGAs provide an opportunity to implement application specific

accelerators – fast, and power efficient

Flexibility challenge: implementing accelerators in RTL (Register

Transfer Level) languages is complex and time consuming

High-Level Synthesis (HLS): synthesizing RTL from descriptions in higher

level languages (e.g., C)

However, conventional HLS tools typically target Digital Signal Processing

algorithms, i.e., typical “regular” applications

We can accelerate GEMS by:

Implementing some parts of the runtime on FPGA

Directly synthesizing queries (i.e., graph pattern matching routines)

Synthesis time is not a limitation: queries do not change often, datasets do

GEMS on FPGAs

March 21, 2022 13

C code generated by GEMS

SPARQL-to-C++ translator

Code is then processed by

Bambu, a High Level Synthesis

tool from Politecnico di Milano

Heavily modified to support our

new architectural templates

Note: accelerating graph walks is

a more complex problem than

accelerating table operations

[V. G. Castellana, M. Minutoli, A. Morari, A. Tumeo, M. Lattuada, F.

Ferrandi: High Level Synthesis of RDF Queries for Graph Analytics.

ICCAD 2015]

[M. Minutoli, V. G. Castellana, A. Tumeo: High-Level Synthesis of

SPARQL queries. SC15 poster]

Challenges for HLS of Irregular

Applications

March 21, 2022 14

Challenge 1: Coarse grained parallelism exploitation

Most HLS approaches focus on exploiting ILP and do not support TLP

specifications (expressed through parallel programming APIs such as

OpenMP, CUDA, OpenCL)

Concurrency and synchronization management

Target architecture design: HLS flows usually generate Finite State

Machines with Datapaths, which are inherently serial

Challenge 2: Support for complex memory subsystems

Dynamic resolution of memory addresses

Pointer-based data structures

Memory consistency and synchronization

Barriers, Atomic memory operations

Distributed/multi-ported memories

Solving Challenge 1: Parallel Distributed

Controller

March 21, 2022 15

From serial FSMD to a parallel distributed controller

Architecture:

Set of communicating control elements, called Execution Managers (EMs)

Each EM establishes when an operation/task can start at runtime

Dynamic execution paradigm

Dedicated hardware (Resource Managers – RMs) for checking:

Satisfaction of dependence constraints

Resource availability

Natural support for variable latency operations/tasks

ASAP execution

Example of Parallel Distributed Controller

March 21, 2022 16

Solving Challenge 2: Hierarchical Memory

Interface Controller (HMI)

March 21, 2022 17

Allows concurrent memory accesses on distributed/multi-ported

shared memories

Dynamically resolves memory addresses

Manages concurrency and synchronization (supporting atomic

operations)

[V.G. Castellana, A. Tumeo, F.

Ferrandi: An adaptive Memory

Interface Controller for improving

bandwidth utilization of hybrid and

reconfigurable systems. DATE

2014.]

HMI details

March 21, 2022 18

Manages concurrency

Provides memory scrambling (solves hotspot)

Collects memory requests, and if their target addresses collide, it

forwards them one at a time

Each memory port is managed by a dedicated arbiter

No delay penalties

Manages synchronization

Directly implements atomic operations (e.g. atomic increment, compare

and swap)

Inside the interface, through dedicated hardware

While running, atomic operations lock the associated memory port

Hierarchical Approach to HLS

March 21, 2022 19

A function is a module, and can contain other function modules

Function modules can use parallel controller (e.g., launching iterations of a

loop, where each iteration has a corresponding hardware kernel), or a FSMD

module (e.g., the loop iteration itself)

Allows generating accelerators for irregular codes with nested loops

Graph algorithms & queries

Load Unbalancing in Queries

Lehigh University Benchmark (reference benchmark for the

semantic web)

5,309,056 triples (LUBM-40); Queries Q1-Q7

March 21, 2022 20

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q1

 1

 10

 100

 0 10000 20000 30000 40000N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q2

 1

 10

 100

 1000

 10000

 0 100000 200000 300000N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q3

 1

 10

 100

 0 100 200 300 400 500 600 700N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q4

 1

 10

 100

 0 100 200 300 400 500 600 700N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q5

 1

 10

 100

 1000

 0 50 100 150 200N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q6

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q7

Dynamic Task Scheduler

March 21, 2022 21

The Task Queue stores tasks ready for execution

The Status Register keeps track of resource availability

The Task Dispatcher issues the tasks

The Termination Logic checks that all tasks have been used

[Marco Minutoli, Vito

Giovanni Castellana,

Antonino Tumeo, Marco

Lattuada, Fabrizio Ferrandi:

Efficient Synthesis of Graph

Methods: A Dynamically

Scheduled. ICCAD 2016]

Experimental Evaluation

March 21, 2022 22

LUBM-1 (100k triples)

LUBM-40 (5M triples)

Architectures integrating

dynamic scheduling vs.

solutions only integrating

PC+MIC

Dynamic Scheduling always

provides higher performance

In the majority of cases, speed

ups are over 3 (with 4

accelerators)

The design is also more area

efficient: higher speed up than

area overhead (also w.r.t.

parallel controller)

Latest Extension: Temporal Multithreading

March 21, 2022 23

With Irregular Applications, we prefer to tolerate latency

Latency reduction through caches and localization ineffective

Objective is to saturate the memory subsystem with parallel memory operations

Temporal, rather than spatial, multithreading provides interesting area/performance/utilization tradeoffs

We extend the DTS design to perform context switching after memory operations

Memory interface further decoupled

Number of contexts is configurable

Svelto Methodology

Architectural Template Mapping

March 21, 2022 24

Multithreaded Architecture Template:

worker and memory controller

March 21, 2022 25

Architecture of a Single

multithreaded worker

Architecture of the Top Memory

Controller

First example – Sequential Accelerator

Create a sequential accelerator implementing tq4 specifying

input/output testbench with xml file

Hints:

Start from the bambu.sh script

Set the top function equal to search

Specify that the memories are outside the accelerator

Set the memory delay to an high value

Specify as testbench argument the xml that is in the directory

26

Solution

bambu --compiler=I386_GCC49 --std=c99 --experimental-

set=BAMBU -O3 -v3 -fno-delete-null-pointer-checks --

channels-type=MEM_ACC_11 --memory-allocation-

policy=NO_BRAM --device-name=xc7vx690t-3ffg1930-VVD --

clock-period=10 -DMAX_VERTEX_NUMBER=26455 -

DMAX_EDGE_NUMBER=100573 -DN_THREADS=1

${root_dir}/common/atominIncrement.c

${root_dir}/common/data.c -I${root_dir}/common/

${root_dir}/trinityq4/lubm_trinityq4.c \

--top-fname=search \

--mem-delay-read=20 --mem-delay-write=20 \

--memory-allocation-policy=NO_BRAM \

--simulate --generate-tb=${root_dir}/test-1.xml

27

Second example – Parallel Accelerator

Create a paralell accelerator implementing tq4 specifying input/output

testbench with xml file

Configuration to be considered

2 Copies of the kernel

4 External memory banks

2 Internal channels

No context switch (i.e., context-switch==1)

28

Solution

bambu --compiler=I386_GCC49 --std=c99 --experimental-

set=BAMBU -O3 -v3 -fno-delete-null-pointer-checks --

channels-type=MEM_ACC_11 -- memory-allocation-policy

=NO_BRAM --device-name=xc7vx690t-3ffg1930-VVD --clock-

period=10 -DMAX_VERTEX_NUMBER=26455 -

DMAX_EDGE_NUMBER=100573 -DN_THREADS=2

${root_dir}/common/atominIncrement.c

${root_dir}/common/data.c -I${root_dir}/common/

${root_dir}/trinityq4/lubm_trinityq4.c --top-

fname=search --mem-delay-read=20 --mem-delay-write=20

--memory-allocation-policy=NO_BRAM --simulate --

generate-tb=${root_dir}/test-1.xml \

--num-threads=2 \

--memory-banks-number=4 \

--channels-number=2 \

--context_switch=1
29

Third example – Context Switch

Create a parallel accelerator implementing tq4 specifying input/output

testbench with xml file

Configuration to be considered

2 Copies of the kernel

4 External memory banks

2 Internal channels

4 Logic Threads x kernel

30

Solution

bambu --compiler=I386_GCC49 --std=c99 --experimental-

set=BAMBU -O3 -v3 -fno-delete-null-pointer-checks --

channels-type=MEM_ACC_11 -- memory-allocation-policy

=NO_BRAM --device-name=xc7vx690t-3ffg1930-VVD --clock-

period=10 -DMAX_VERTEX_NUMBER=26455 -

DMAX_EDGE_NUMBER=100573 -DN_THREADS=2

${root_dir}/common/atominIncrement.c

${root_dir}/common/data.c -I${root_dir}/common/

${root_dir}/trinityq4/lubm_trinityq4.c --top-

fname=search --mem-delay-read=20 --mem-delay-write=20

--memory-allocation-policy=NO_BRAM --simulate --

generate-tb=${root_dir}/test-1.xml \

--num-threads=2 \

--memory-banks-number=4 \

--channels-number=2 \

--context_switch=4
31

Fourth example – Context Switch DSE

Create parallel accelerators implementing tq4 specifying input/output

testbench with xml file using context switch

Evaluate different configurations

Double the number of contexts

Double the number of memory banks

Etc.

32

Solution

--memory-banks-number=4 --channels-number=2

--context_switch=8

--memory-banks-number=8 --channels-number=2

--context_switch=8

--memory-banks-number=16 --channels-number=2

--context_switch=8

33

Design Space Exploration

March 21, 2022 34

Results comparison

March 21, 2022 35

Conclusions

Identified challenges due to irregular behaviors in Data Analytics applications

Introduced GEMS, our graph database for homogeneous clusters, which

supports RDF and SPARQL

Highlighted possible ways to accelerate SPARQL queries with custom

accelerators in our framework

Identified current limitations of High-Level Synthesis (HLS) for Data Analytics

applications

Presented architectural templates and methodologies for the HLS of Data

Analytics applications

Presented results of the synthesis of SPARQL queries with our methodology

March 21, 2022 36

Thank you for your attention!

Questions?

antonino.tumeo@pnnl.gov

vitoGiovanni.castellana@pnnl.gov

marco.minutoli@pnnl.gov

fabrizio.ferrandi@polimi.it

March 21, 2022 37

mailto:antonino.tumeo@pnnl.gov
mailto:vitoGiovanni.castellana@pnnl.gov
mailto:marco.minutoli@pnnl.gov
mailto:Fabrizio.ferrandi@polimi.it

