
ICS21 Tutorial

Bambu: High-level synthesis for parallel
programming

Fabrizio Ferrandi, Serena Curzel, Michele Fiorito (Politecnico di Milano),
Vito Giovanni Castellana, Marco Minutoli, Antonino Tumeo (PNNL)

International Conference

on Supercomputing 2021
June 14 - 18, 2021. Worldwide online event

June 14, 2021

2
Outline

❑ 9:00 Presentation of Bambu

❑ 10:00 break

❑ 10:30 Compiler Based Optimizations, Tuning and
Customization of Generated Accelerators

❑ 11:30 break

❑ 12:30 Target Customization and Tool Integration

❑ 13:30 break

❑ 14:00 Exploiting Vectorization in High Level
Synthesis of Nested Irregular Loops

❑ 15:00 break

❑ 15:30 Enabling the High-Level Synthesis of Data
Analytics Accelerators

❑ 16:30 Future research on Bambu

June 14, 2021

3
Material prepared by

❑ Politecnico di Milano

Fabrizio Ferrandi

Marco Lattuada

Christian Pilato

Pietro Fezzardi

Serena Curzel

Michele Fiorito

❑ PNNL

Vito Giovanni Castellana

Marco Minutoli

Antonino Tumeo

June 14, 2021

4
Tutorial Material

❑ Slides and material can be downloaded from:

ICS 2021 tutorial | panda.dei.polimi.it

https://panda.dei.polimi.it/?page_id=971

June 14, 2021

5
Colab based tutorial

❑ Project Jupyter is a project and community whose
goal is to "develop open-source software, open-
standards, and services for interactive computing
across dozens of programming languages".

PandA-bambu/documentation/tutorial_ics_2021 at
tutorial_2021 · ferrandi/PandA-bambu · GitHub

https://github.com/ferrandi/PandA-bambu/tree/tutorial_2021/documentation/tutorial_ics_2021

June 14, 2021

6
Bambu binary distribution

❑ The code is available as AppImage on https://panda.dei.polimi.it

bambu-x86_64.AppImage

AppImage is a format for distributing portable software on Linux
without needing superuser permissions to install the application.

Once downloaded just add the execution rights with this command:

chmod +x bambu-x86_64.AppImage

Source code is available on GitHub:

• https://github.com/ferrandi/PandA-bambu/

https://panda.dei.polimi.it/
https://polimi365-my.sharepoint.com/:u:/g/personal/10064870_polimi_it/ES_4ouo-S8NCnLyi1sUbWg0BfXKydnlB6v3MxfgeZvWq2w?e=IMry46
https://github.com/ferrandi/PandA-bambu/

June 14, 2021

7
A bit of history about PandA

❑ PandA framework development started on 2004 as a support research
infrastructure for PoliMi in the context of ICODES – FP6-IST EU-funded
project

Parsing and analysis of TLM 2.0 SystemC descriptions (gcc v.3.5)

❑ In the hArtes EU-funded project (2006-2010), it was used to

Analyzing generic C-based application annotated with pragmas
(OpenMP)

Extracting parallel tasks

Estimating performance of embedded app

C-to-C rewriting

❑ Later, in Synaptic (2009-2013) and in Faster (2011-2014) EU-funded
projects, logic- and high-level synthesis has been extended

Bambu (HLS tool) was first released in March 2012.

❑ ESA funded many research on code predictability analysis, performance
analysis, and integration of HLS in model-based design flows.

❑ Current research funded by two EU H2020 projects: EVEREST and
HERMES.

June 14, 2021

8

Bambu: an example of modern
HLS tools

❑ HLS tool developed at Politecnico di Milano (Italy) within the PandA
framework

Available under GPL v3 at

• http://panda.dei.polimi.it/

• https://github.com/ferrandi/PandA-bambu

❑ Example features

Front-end Input: interfacing with GCC/CLANG-LLVM for parsing C code

• Complete support for ANSI C (except for recursion)
– Support for pointers, user-defined data types, built-in C functions, etc..

• Source code optimizations
– may alias analysis, dead-code elimination, hoisting, loop optimizations, etc...

Target-aware synthesis

• Characterization of the technology library based on target device

Verification

• Integrated testbench generation and simulation
– automated interaction with Iverilog, Verilator, Xilinx Isim, Xilinx Xsim, Mentor Modelsim

Back-end: Automated interaction with commercial synthesis tools

• FPGA: Xilinx ISE, Xilinx Vivado, Altera Quartus, Lattice Diamond

• ASIC: OpenRoand

June 14, 2021

9
Bambu: front-end

June 14, 2021

10
Bambu: middle-end

June 14, 2021

11
Bambu: back-end

June 14, 2021

12
Bambu: command-line interface

❑Minimal command
$ bambu filename.c

❑ Select the top component
$ bambu filename.c –top-fname=top_function_name

❑ Controlling the clock period (100Mhz)
$ bambu filename.c --clock-period=10

❑ Select the device
$ bambu filename.c –device-name=xc7z020,-1,clg484,VVD

June 14, 2021

13
First synthesis

❑ Go To Colab

June 14, 2021

14
Subset of synthesizable C (1)

❑ We support what standard compilers accept as input
(CLANG/LLVM and GCC)

❑ Supported features:
Expressions of any kind: arithmetic, logical, bitwise,
relational, conditional, comma-based expressions.
Types: integers, single- and double-precision floating point,
_Bool and Complex, struct-or-union, bitfields, enum, typedef,
pointers and arrays, type qualifiers.
Variable declarations, initialization, storage-specifiers
Functions definition and declaration, extern or static, pointer
to functions, parameters passed by copy or reference, tail
recursive functions.
Statements and blocks: labeled (case), compound, expression,
selection (if,switch), iteration(while,do,for), jump (goto,continue,break,return)
All preprocessor directives

Unaligned memory accesses and dynamic pointers resolution
GCC vectorization

June 14, 2021

15
Subset not supported

❑ struct returned by copy

❑ Non-tailing recursive functions

June 14, 2021

16
libbambu

❑ assert, puts, putchar, read, open, close, write, printf,
exit, abort

❑ libc functions: bswap32,memcmp, memcpy, memmove, memset, malloc,
free, memalign, alloca_with_align, calloc, bcopy, bzero,
memchr, mempcpy, memrchr, rawmemchr, stpcpy, stpncpy,
strcasecmp, strcasestr, strcat, strchr, strchrnul, strcmp,
strcpy, strcspn, strdup, strlen, strncasecmp, strncat,
strncmp, strncpy, strndup, strnlen, strpbrk, strrchr,
strsep, strspn, strstr, strtok

❑ libm functions: acos, acosh, asin, asinh, atan, atan2, atanh,
cbrt, ceil, cexpi, copysign, cos, cosh, drem, erf, exp,
exp10, expm1, fabs, fdim, finite, floor, lfloor, fma, fmax,
fmin, fmod, fpclassify, frexp, gamma, lgamma, tgamma, hypot,
ilogb, infinity, isinf, isnan, j0, j1, jn, ldexp, log, log2,
log10, log1p, modf, nan, nearbyint, nextafter, pow, pow10,
remainder, remquo, rint, lrint, llrint, round, lround,
llround, scalb, scalbln, scalbn, signbit, significand, sin,
sincos, sinh, sqrt, tan, tanh, trunc.

June 14, 2021

17
Second example

❑ Search and insertion in a binary tree

Two data structures: stack and binary tree

Static memory allocators

Tail recursive functions

Use of pointer to pointers (some HLSs have problems)

❑ Goto Colab

June 14, 2021

18
Third example

❑ Crypto core

1) compiled with a standard clang-11

2) bambu synthesis starting from the .ll file

June 14, 2021

19
Synthesis per function

❑ one component per function

function interface

start and done

parameter passing

•wires

•memory interaction

• none (ap_none), acknowledge (ap_ack), valid
(ap_vld), ovalid (ap_ovld), handshake
(ap_hs), fifo (ap_fifo) and array
(ap_memory)

❑ hierarchy based on call graph

no-recursion

proxy

June 14, 2021

20
Synthesis per function: hierarchy

❑One component per function

call graph RTL hierarchy

June 14, 2021

21
Synthesis per function: proxy

June 14, 2021

22
Fourth example

❑ Lu-decomposition with single precision floating
point arithmetic

❑ Goto Colab

June 14, 2021

23

Integration of hand- written
components in the HLS flow

❑ Function mapped on IPs has to be declared as extern:

extern void module1(uint32_t input1,

uint16_t input2, module1_output_t *outputs);

❑ C code has to be passed with the following option

--C-no-parse=module1.c,…

❑ Binding between function module1 and component
module1 has to be specified with a XML file and passed
as an option to bambu

$ bambu … module_lib.xml

❑ Check these examples:

examples/IP_integration

examples/breakout

examples/pong

examples/led_example

June 14, 2021

24
Fifth example

❑ Integration of existing IPs written in Verilog that receives
structs passed by pointers

❑ Goto Colab

June 14, 2021

25
Synthesis of function pointers

June 14, 2021

26

Adding a memory mapped interface
to filters

June 14, 2021

27
Code transformation performed

June 14, 2021

28

Sequence diagram for function
indirect call

Call mechanism complexity: #cycles=Wl(Np+1)+lhs(Wl+Rl)

June 14, 2021

29
Sixth example

❑ Parametric quick sort

❑Quick sort parametric with respect to the
comparison function

❑ Goto Colab

June 14, 2021

30
C++ support

❑ Support of C++ is ongoing:

templates

C++11 and beyond

ac_types from Mentor Graphics could be used

ap_types from Xilinx support by wrapping ac_types

#include <algorithm>

int gcd(int x, int y)

{

if(x < y)

std::swap(x, y);

while(y > 0)

{

int f = x % y;

x = y;

y = f;

}

return x;

}

June 14, 2021

31
Fortran support (1)

* euclid.f (FORTRAN 77)

* Find greatest common divisor using the Euclidean algorithm

FUNCTION NGCD(NA, NB)

IA = NA

IB = NB

1 IF (IB.NE.0) THEN

ITEMP = IA

IA = IB

IB = MOD(ITEMP, IB)

GOTO 1

END IF

NGCD = IA

RETURN

END

By default parameters are passed
by reference

June 14, 2021

32
Discrepancy Analysis Debug Flow

June 14, 2021

33

http://panda.dei.polimi.it

