
Agile Hardware Design for
Complex Data Science

Applications:
Opportunities and

Challenges

Antonino Tumeo

March 21, 2022

2

Tutorial Presenters

Antonino Tumeo Fabrizio Ferrandi

Marco Minutoli

Michele FioritoVito Giovanni

Castellana
Serena Curzel

Nicolas

Bohm Agostini

3

Tutorial Schedule

Time Presenter Title

13:15 - 13:45 Antonino Tumeo Agile Hardware Design for Complex Data Science

Applications: Opportunities and Challenges

13:45 - 14:15 Fabrizio Ferrandi Bambu: an Open-Source Research Framework for the High-

Level Synthesis of Complex Applications

14:15 - 15:00 Serena Curzel Hands-on: Productive High-Level Synthesis with Bambu

15:00 - 15:15 Coffee Break

15:15 - 16:00 Michele Fiorito Hands-on: Compiler Based Optimizations, Tuning and

Customization of Generated Accelerators

16:00 - 16:45 Nicolas

Bohm Agostini

Hands-on: SODA-OPT: Enabling System-Level Design in

MLIR for High-Level Synthesis and Beyond

16:45 - 17:15 Marco Minutoli

Vito Giovanni Castellana

Technical presentation and Hands-on: Svelto: High-Level

Synthesis of Multi-Threaded Accelerators for Graph

Analytics

4

Motivations

• Data science algorithms, approaches, and frameworks are
quickly evolving

• Domain-specific accelerators are the only possible
approach to keep increasing performance in tight
constraints

• Existing accelerators start from specific models (i.e., mostly
deep neural networks) or only try to accelerate specific
computational patterns coming from high-level frameworks

• Designing hardware by hand is complex and time-
consuming

• Depending on the application, a designer may want to
explore performance, area, energy, accuracy, and more…

• Need tools to quickly transition from formulation of an
algorithm to the accelerator implementation and
explore the accelerator design along different
dimensions

LeNet architecture from the original paper

5

Why Data Science?

• Increasingly complex data analysis pipelines

• May include algorithms with significantly different behaviors

▪ Deep neural networks, graph analytics, graph representation learning…

• Algorithmic research in the area is quickly evolving

• Algorithms are data-intensive

▪ Significant amount of data per computation

• Some algorithms exhibit irregular behaviors

▪ Graph algorithms are the prototypical irregular kernel

6

Possible Applications

• Inference in the cloud (Brainwave, Bing, Alibaba, Amazon…)

• High-performance computing

▪ Converged applications (Scientific simulation, machine learning, and graph analytics)

▪ Near data / near network data analysis

• Autonomous systems

▪ Low latency reasoning for decision making

▪ Federated learning

7

Possible Applications: Experimental Scientific
Workflows

Instrument Hardware

Local
Instrument
Controller

Local
Processing /

Analytics

Detectors

Stage

Alignment

Scan

High-Performance
Computing Facilities

Accelerated Storage

Instrument Local
Processing and Control

Optimized
High-Performance

Networking

Codesign
Opportunity:
• Energy-Efficient Data

Ingest
• Accelerated Local

Processing and Data
Conditioning

• Adaptive Instrument
Steering

Codesign
Opportunity:
• Energy-Efficient Data

Transmission
• Processing in

Network/SmartNIC

Codesign
Opportunity:
• Custom SoC
• Higher performance
• Reduced costs
• Greater energy efficiency

Codesign
Opportunity:
• Accelerators in Storage
• High-Performance

Custom Data Formats

8

Challenges

• Need to go from the high-level data science frameworks to the hardware
implementation

▪ Tension between domain specificity and generality applies to both hardware and the
hardware generators/tools

▪ Python frameworks typically based on tensor representations

✓ What about graphs and sparse data structures?

• Generating only the accelerators is not sufficient, we need to consider the
system level implications

• Many levels, many tools, often not directly interoperating

• Verification and testing

• Many efforts to reduce costs to access tools and IPs, but still a long road

9

SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible,
open-source hardware compiler from high-level
programming frameworks to silicon

• Compiler-based frontend, leveraging the MultiLevel
Intermediate Representation (MLIR)

• Compiler-based backend, leveraging state-of-the-
art High-Level Synthesis (HLS) techniques, as well
as a Coarse-Grained Reconfigurable Array (CGRA)
generator

• Generates synthesizable Verilog for a variety of
targets, from Field Programmable Gate Arrays
(FPGAs) to Application Specific Integrated Circuits
(ASICs)

• Optimizations at all levels are performed as compiler
optimization passes

Translate to MLIR IR

Backend:

HLS

Frontend:

SODA-OPT

Synthesizer

Design Space

Exploration

Templates

Components

FPGA or ASIC Targets

Constraints

Resource Library

Metrics

High-Level

Framework ML Model

Chip Design

DSL

Evaluation

Executable

Processor

LLV M Tools

[Marco Minutoli, Vito Giovanni Castellana, Cheng Tan, Joseph B.

Manzano, Vinay Amatya, Antonino Tumeo, David Brooks, Gu-Yeon

Wei: SODA: a New Synthesis Infrastructure for Agile Hardware

Design of Machine Learning Accelerators. ICCAD 2020: 98:1-98:7]

[Jeff Jun Zhang, Nicolas Bohm Agostini, Shihao Song, Cheng Tan,

Ankur Limaye, Vinay Amatya, Joseph B. Manzano, Marco Minutoli,

Vito Giovanni Castellana, Antonino Tumeo, Gu-Yeon Wei, David

Brooks: Towards Automatic and Agile AI/ML Accelerator Design with

End-to-End Synthesis. ASAP 2021: 218-225]

10

SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend
optimizer “generates” the SODA High-Level IR

• Employs and embraces the MLIR framework

▪ MLIR: Multi-Level Intermediate Representation

▪ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others

▪ Several architecture independent dialects (Linalg, Affine,
SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR “bridges”
(e.g., libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:

▪ Identify dataflow segments for hardware generation

▪ Perform high-level optimizations (dataflow transformations,
data-level and instruction-level parallelism extraction)

▪ Generate interfacing code and runtime calls for
microcontroller

SODA-OPT: System Overview

https://gitlab.pnnl.gov/sodalite/soda-opt
[N. Bohm Agostini, D. Kaeli, A. Tumeo: SODA-OPT: System-Level Design in MLIR for HLS. SC 21 Poster]

https://gitlab.pnnl.gov/sodalite/soda-opt

11

SODA Synthesizer: HLS Backend

• The synthesizer backend take as input the properly
optimized low-level IR and generate the hardware
descriptions of the accelerators

• The HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis
(HLS)

▪ Key features: parallel accelerator designs, modular
HLS, and ASIC support

• The HLS backend provides automated testing and
verification of the generated designs

https://panda.dei.polimi.it

Analysis & low-level optimization

Template

based

synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog and Testbench

Backend: HLS

From: Frontend

To: Chip Design

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli,

Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of

Complex Applications. DAC 2021: 1327-1330]

12

SODA Synthesizer: ASIC targets

• The multi-level approach of the SODA toolchain allows

supporting different target technologies (FPGA, ASIC) for

actual generation of the designs

• ASIC targets:

• Commercial Tools (Synopsys Design Compiler with

Global Foundries 12/14 nm cells)

• OpenROAD suite (OpenPDK 45nm and ASAP 7nm

cell libraries)

• Backends’ resources characterized for the target technology:

• HLS Backend: Eucalyptus tool in Bambu, allows

driving hardware synthesis algorithms to optimize for

area, latency, etc.

• PandA-Bambu now also the opensource C frontend for

ZeroASIC’ SIliconCompiler

(https://www.siliconcompiler.com)

SODA characterization flow. The characterization flow can be

extended to synthesize HLS generated designs, or used to estimate

their area-latency-power profiles to drive the Design Space

Exploration engine

https://theopenroadproject.org

https://www.siliconcompiler.com/
https://theopenroadproject.org/

13

From Python to optimized ASIC

• LeNet example

• Each of the operator is

synthesized to an ASIC

accelerator

• SODA optimized accelerators

are bigger, but also much faster

LeNet architecture from the original paper

14

Detailed Results of the Optimization Process

• OpenRoad with OpenPKD 45 nm, targeting 500 MHz

• Significant speed ups in almost all cases

• Efficiency (FLOPS/W) may reduce with the optimized designs because of
increased power consumption and area, however performance also increases

15

Other Approaches (an incomplete list)

• A multitude of hand-designed domain specific accelerators

▪ Trying to recover some levels of flexibility either using extensible Instruction Set Architectures (e.g.,
RISC-V) or novel reconfigurable designs

• Approaches that generate custom hardware from Python framework mapping on
parametric templates

▪ GEMMINI: parametric template

▪ VeriGOOD-ML: compiler maps on three different architectures

▪ VTA: specialized coprocessor (GEMM unit) generated with HLS

• Convert code to imperative languages (C/C++) annotated for HLS

▪ PyLog: Python to C/C++ for Vivado HLS

▪ HeteroCL: partitions code between CPU and FPGA, provides a library of functions to insert hardware-
specific information in the source code, generates C/C++ for HLS

▪ ScaleHLS: MLIR to annotate C/C++ for Vivado HLS

• CIRCT (Circuit IR Compilers and Tools): MLIR to build interoperable tools for hardware
design

16

Some Opportunities

• Circuit-level Intermediate Representations

▪ To enable hardware level transformation, modularity, generation of better RTL code

• Profile-driven synthesis

▪ Interface with instrumentation and profiling tools; profile on the host, employ the
information for the synthesis

▪ Especially for data science: many data-intensive, data-dependent algorithms

• Memory-centric optimizations

▪ Data-intensive algorithms focused at how data are accessed and moved rather than on
the compute

• AI-driven design space exploration

▪ Compilers facilitate development of estimation models

17

Conclusions

• Discussed the benefit of end-to-end synthesis tools for data science application

• Introduced the SODA Synthesizer, a modular, multilevel, extensible, and opensource
hardware compiler

▪ Composed of a high-level compiler and an HLS tool

▪ Supports FPGAs and ASIC

• Discussed the SODA framework in the context of Data Science Applications as a tool for
agile hardware development

▪ And some of the other ongoing research in the area

• Discussed challenges and opportunities for hardware generators and compiler-based
design tools

• The next presentation will specifically focus on High-Level Synthesis, and we will then dive
into the hands-on Bambu and SODA-Opt

Thank you

18

