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Tutorial Schedule

Time Presenter Title

13:15 - 13:45 Antonino Tumeo Agile Hardware Design for Complex Data Science 

Applications: Opportunities and Challenges

13:45 - 14:15 Fabrizio Ferrandi Bambu: an Open-Source Research Framework for the High-

Level Synthesis of Complex Applications

14:15 - 15:00 Serena Curzel Hands-on: Productive High-Level Synthesis with Bambu

15:00 - 15:15 Coffee Break

15:15 - 16:00 Michele Fiorito Hands-on: Compiler Based Optimizations, Tuning and 

Customization of Generated Accelerators

16:00 - 16:45 Nicolas

Bohm Agostini

Hands-on: SODA-OPT: Enabling System-Level Design in 

MLIR for High-Level Synthesis and Beyond

16:45 - 17:15 Marco Minutoli

Vito Giovanni Castellana

Technical presentation and Hands-on: Svelto: High-Level 

Synthesis of Multi-Threaded Accelerators for Graph 

Analytics
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Motivations

• Data science algorithms, approaches, and frameworks are 
quickly evolving

• Domain-specific accelerators are the only possible 
approach to keep increasing performance in tight  
constraints 

• Existing accelerators start from specific models (i.e., mostly 
deep neural networks) or only try to accelerate specific 
computational patterns coming from high-level frameworks

• Designing hardware by hand is complex and time-
consuming

• Depending on the application, a designer may want to 
explore performance, area, energy, accuracy, and more…

• Need tools to quickly transition from formulation of an 
algorithm to the accelerator implementation and 
explore the accelerator design along different 
dimensions

LeNet architecture from the original paper
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Why Data Science?

• Increasingly complex data analysis pipelines

• May include algorithms with significantly different behaviors

▪ Deep neural networks, graph analytics, graph representation learning…

• Algorithmic research in the area is quickly evolving

• Algorithms are data-intensive

▪ Significant amount of data per computation

• Some algorithms exhibit irregular behaviors

▪ Graph algorithms are the prototypical irregular kernel
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Possible Applications

• Inference in the cloud (Brainwave, Bing, Alibaba, Amazon…)

• High-performance computing

▪ Converged applications (Scientific simulation, machine learning, and graph analytics)

▪ Near data / near network data analysis

• Autonomous systems

▪ Low latency reasoning for decision making

▪ Federated learning
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Possible Applications: Experimental Scientific 
Workflows

Instrument Hardware

Local 
Instrument 
Controller

Local 
Processing / 

Analytics

Detectors

Stage

Alignment

Scan

High-Performance
Computing Facilities

Accelerated Storage

Instrument Local
Processing and Control

Optimized
High-Performance

Networking

Codesign
Opportunity:
• Energy-Efficient Data

Ingest
• Accelerated Local 

Processing and Data 
Conditioning

• Adaptive Instrument 
Steering 

Codesign
Opportunity:
• Energy-Efficient Data 

Transmission
• Processing in

Network/SmartNIC

Codesign
Opportunity:
• Custom SoC
• Higher performance 
• Reduced costs
• Greater energy efficiency

Codesign
Opportunity:
• Accelerators in Storage
• High-Performance 

Custom Data Formats
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Challenges

• Need to go from the high-level data science frameworks to the hardware 
implementation

▪ Tension between domain specificity and generality applies to both hardware and the 
hardware generators/tools

▪ Python frameworks typically based on tensor representations

✓ What about graphs and sparse data structures?

• Generating only the accelerators is not sufficient, we need to consider the 
system level implications

• Many levels, many tools, often not directly interoperating

• Verification and testing

• Many efforts to reduce costs to access tools and IPs, but still a long road 
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SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible, 
open-source hardware compiler from high-level 
programming frameworks to silicon

• Compiler-based frontend, leveraging the MultiLevel
Intermediate Representation (MLIR)

• Compiler-based backend, leveraging state-of-the-
art High-Level Synthesis (HLS) techniques, as well 
as a Coarse-Grained Reconfigurable Array (CGRA) 
generator

• Generates synthesizable Verilog for a variety of 
targets, from Field Programmable Gate Arrays 
(FPGAs) to Application Specific Integrated Circuits 
(ASICs)

• Optimizations at all levels are performed as compiler 
optimization passes

Translate to MLIR IR

Backend: 

HLS

Frontend: 

SODA-OPT

Synthesizer

Design Space 

Exploration

Templates

Components

FPGA or ASIC Targets

Constraints

Resource Library

Metrics

High-Level 

Framework ML Model

Chip Design

DSL

Evaluation

Executable

Processor

LLV M Tools

[Marco Minutoli, Vito Giovanni Castellana, Cheng Tan, Joseph B. 

Manzano, Vinay Amatya, Antonino Tumeo, David Brooks, Gu-Yeon 

Wei: SODA: a New Synthesis Infrastructure for Agile Hardware 

Design of Machine Learning Accelerators. ICCAD 2020: 98:1-98:7]

[Jeff Jun Zhang, Nicolas Bohm Agostini, Shihao Song, Cheng Tan, 

Ankur Limaye, Vinay Amatya, Joseph B. Manzano, Marco Minutoli, 

Vito Giovanni Castellana, Antonino Tumeo, Gu-Yeon Wei, David 

Brooks: Towards Automatic and Agile AI/ML Accelerator Design with 

End-to-End Synthesis. ASAP 2021: 218-225]
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SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend 
optimizer “generates” the SODA High-Level IR

• Employs and embraces the MLIR framework

▪ MLIR: Multi-Level Intermediate Representation

▪ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others

▪ Several architecture independent dialects (Linalg, Affine, 
SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR “bridges” 
(e.g., libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:

▪ Identify dataflow segments for hardware generation

▪ Perform high-level optimizations (dataflow transformations, 
data-level and instruction-level parallelism extraction)

▪ Generate interfacing code and runtime calls for 
microcontroller

SODA-OPT: System Overview

https://gitlab.pnnl.gov/sodalite/soda-opt
[N. Bohm Agostini, D. Kaeli, A. Tumeo: SODA-OPT: System-Level Design in MLIR for HLS. SC 21 Poster]

https://gitlab.pnnl.gov/sodalite/soda-opt
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SODA Synthesizer: HLS Backend

• The synthesizer backend take as input the properly 
optimized low-level IR and generate the hardware 
descriptions of the accelerators 

• The HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis 
(HLS)

▪ Key features: parallel accelerator designs, modular 
HLS, and ASIC support

• The HLS backend provides automated testing and 
verification of the generated designs

https://panda.dei.polimi.it

Analysis & low-level optimization

Template 

based 

synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog and Testbench

Backend: HLS

From: Frontend

To: Chip Design

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli, 

Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of 

Complex Applications. DAC 2021: 1327-1330]
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SODA Synthesizer: ASIC targets

• The multi-level approach of the SODA toolchain allows 

supporting different target technologies (FPGA, ASIC) for 

actual generation of the designs

• ASIC targets:

• Commercial Tools (Synopsys Design Compiler with 

Global Foundries 12/14 nm cells)

• OpenROAD suite (OpenPDK 45nm and ASAP 7nm 

cell libraries)

• Backends’ resources characterized for the target technology: 

• HLS Backend: Eucalyptus tool in Bambu, allows 

driving hardware synthesis algorithms to optimize for 

area, latency, etc.

• PandA-Bambu now also the opensource C frontend for 

ZeroASIC’ SIliconCompiler

(https://www.siliconcompiler.com)

SODA characterization flow. The characterization flow can be 

extended to synthesize HLS generated designs, or used to estimate 

their area-latency-power profiles to drive the Design Space 

Exploration engine

https://theopenroadproject.org

https://www.siliconcompiler.com/
https://theopenroadproject.org/
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From Python to optimized ASIC

• LeNet example

• Each of the operator is 

synthesized to an ASIC 

accelerator

• SODA optimized accelerators 

are bigger, but also much faster

LeNet architecture from the original paper
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Detailed Results of the Optimization Process

• OpenRoad with OpenPKD 45 nm, targeting 500 MHz

• Significant speed ups in almost all cases

• Efficiency (FLOPS/W) may reduce with the optimized designs because of 
increased power consumption and area, however performance also increases
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Other Approaches (an incomplete list)

• A multitude of hand-designed domain specific accelerators

▪ Trying to recover some levels of flexibility either using extensible Instruction Set Architectures (e.g., 
RISC-V) or novel reconfigurable designs

• Approaches that generate custom hardware from Python framework mapping on 
parametric templates

▪ GEMMINI: parametric template

▪ VeriGOOD-ML: compiler maps on three different architectures

▪ VTA: specialized coprocessor (GEMM unit) generated with HLS

• Convert code to imperative languages (C/C++) annotated for HLS

▪ PyLog: Python to C/C++ for Vivado HLS

▪ HeteroCL: partitions code between CPU and FPGA, provides a library of functions to insert hardware-
specific information in the source code, generates C/C++ for HLS

▪ ScaleHLS: MLIR to annotate C/C++ for Vivado HLS

• CIRCT (Circuit IR Compilers and Tools): MLIR to build interoperable tools for hardware 
design
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Some Opportunities

• Circuit-level Intermediate Representations

▪ To enable hardware level transformation, modularity, generation of better RTL code

• Profile-driven synthesis

▪ Interface with instrumentation and profiling tools; profile on the host, employ the 
information for the synthesis

▪ Especially for data science: many data-intensive, data-dependent algorithms

• Memory-centric optimizations

▪ Data-intensive algorithms focused at how data are accessed and moved rather than on 
the compute

• AI-driven design space exploration

▪ Compilers facilitate development of estimation models
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Conclusions

• Discussed the benefit of end-to-end synthesis tools for data science application

• Introduced the SODA Synthesizer, a modular, multilevel, extensible, and opensource 
hardware compiler

▪ Composed of a high-level compiler and an HLS tool

▪ Supports FPGAs and ASIC

• Discussed the SODA framework in the context of Data Science Applications as a tool for 
agile hardware development

▪ And some of the other ongoing research in the area

• Discussed challenges and opportunities for hardware generators and compiler-based 
design tools

• The next presentation will specifically focus on High-Level Synthesis, and we will then dive 
into the hands-on Bambu and SODA-Opt



Thank you

18


