
Users’ manual for the Sollya tool

Release 3.0

Sylvain Chevillard
sylvain.chevillard@ens-lyon.org

Christoph Lauter
christoph.lauter@ens-lyon.org

Mioara Joldeş
mioara.joldes@ens-lyon.fr

April 20, 2017

License

The Sollya tool is Copyright c© 2006-2011 by

Laboratoire de l’Informatique du Parallélisme - UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA
5668, Lyon, France,

LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2), Nancy, France,

Laboratoire d’Informatique de Paris 6, Équipe PEQUAN, UPMC Université Paris 06 - CNRS - UMR
7606 - LIP6, Paris, France,

and by

INRIA Sophia-Antipolis Méditerranée, APICS Team, Sophia-Antipolis, France.

All rights reserved.

The Sollya tool is open software. It is distributed and can be used, modified and redistributed under the
terms of the CeCILL-C licence available at http://www.cecill.info/ and reproduced in the COPYING

file of the distribution. The distribution contains parts of other libraries as a support for but not integral
part of Sollya. These libraries are reigned by the GNU Lesser General Public License that is available
at http://www.gnu.org/licenses/ and reproduced in the COPYING file of the distribution.

This software (Sollya) is distributed WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Contents

1 Compilation and installation of the Sollya tool 5
1.1 Compilation dependencies . 5
1.2 Sollya command line options . 6

2 Introduction 7

3 General principles 9

4 Variables 11

1

sylvain.chevillard@ens-lyon.org
christoph.lauter@ens-lyon.org
mioara.joldes@ens-lyon.fr
http://www.cecill.info/
http://www.gnu.org/licenses/

5 Data types 12
5.1 Booleans . 12
5.2 Numbers . 13
5.3 Rational numbers and rational arithmetic . 16
5.4 Intervals and interval arithmetic . 17
5.5 Functions . 21
5.6 Strings . 22
5.7 Particular values . 22
5.8 Lists . 23
5.9 Structures . 24

6 Iterative language elements: assignments, conditional statements and loops 26
6.1 Blocks . 26
6.2 Assignments . 26
6.3 Conditional statements . 27
6.4 Loops . 28

7 Functional language elements: procedures and pattern matching 29
7.1 Procedures . 29
7.2 Pattern matching . 31

8 Commands and functions 41
8.1 abs . 41
8.2 absolute . 42
8.3 accurateinfnorm . 42
8.4 acos . 43
8.5 acosh . 43
8.6 && . 44
8.7 :. 44
8.8 ∼ . 45
8.9 asciiplot . 46
8.10 asin . 48
8.11 asinh . 48
8.12 atan . 48
8.13 atanh . 48
8.14 autodiff . 49
8.15 autosimplify . 50
8.16 bashevaluate . 51
8.17 bashexecute . 52
8.18 binary . 52
8.19 boolean . 52
8.20 canonical . 53
8.21 ceil . 54
8.22 checkinfnorm . 54
8.23 coeff . 55
8.24 @ . 56
8.25 constant . 57
8.26 cos . 57
8.27 cosh . 57
8.28 D . 58
8.29 DD . 58
8.30 DE . 58
8.31 decimal . 58
8.32 default . 58
8.33 degree . 59
8.34 denominator . 59

2

8.35 diam . 60
8.36 dieonerrormode . 60
8.37 diff . 62
8.38 dirtyfindzeros . 63
8.39 dirtyinfnorm . 63
8.40 dirtyintegral . 64
8.41 display . 65
8.42 / . 66
8.43 double . 67
8.44 doubledouble . 68
8.45 doubleextended . 68
8.46 dyadic . 69
8.47 == . 70
8.48 erf . 71
8.49 erfc . 71
8.50 error . 71
8.51 evaluate . 72
8.52 execute . 73
8.53 exp . 74
8.54 expand . 74
8.55 expm1 . 75
8.56 exponent . 75
8.57 externalplot . 76
8.58 externalproc . 77
8.59 false . 78
8.60 file . 79
8.61 findzeros . 79
8.62 fixed . 80
8.63 floating . 80
8.64 floor . 81
8.65 fpminimax . 81
8.66 fullparentheses . 84
8.67 function . 85
8.68 >= . 87
8.69 > . 87
8.70 guessdegree . 88
8.71 halfprecision . 89
8.72 head . 89
8.73 hexadecimal . 90
8.74 honorcoeffprec . 90
8.75 hopitalrecursions . 91
8.76 horner . 92
8.77 HP . 92
8.78 implementconstant . 92
8.79 implementpoly . 98
8.80 in . 101
8.81 inf . 102
8.82 infnorm . 103
8.83 integer . 105
8.84 integral . 105
8.85 isbound . 106
8.86 isevaluable . 107
8.87 <= . 108
8.88 length . 108
8.89 library . 109
8.90 libraryconstant . 110

3

8.91 list of . 111
8.92 log . 111
8.93 log10 . 111
8.94 log1p . 112
8.95 log2 . 112
8.96 < . 112
8.97 mantissa . 113
8.98 max . 113
8.99 mid . 114
8.100midpointmode . 115
8.101min . 115
8.102− . 116
8.103∗ . 117
8.104nearestint . 118
8.105!= . 119
8.106nop . 120
8.107! . 120
8.108numberroots . 121
8.109numerator . 122
8.110off . 123
8.111on . 123
8.112|| . 124
8.113parse . 124
8.114perturb . 125
8.115pi . 126
8.116plot . 126
8.117+ . 128
8.118points . 129
8.119postscript . 129
8.120postscriptfile . 130
8.121̂ . 130
8.122powers . 131
8.123prec . 131
8.124precision . 132
8.125.: . 132
8.126print . 133
8.127printdouble . 136
8.128printexpansion . 136
8.129printsingle . 137
8.130printxml . 138
8.131proc . 139
8.132procedure . 144
8.133QD . 145
8.134quad . 145
8.135quit . 146
8.136range . 146
8.137rationalapprox . 147
8.138rationalmode . 148
8.139RD . 148
8.140readfile . 149
8.141readxml . 149
8.142relative . 150
8.143remez . 150
8.144rename . 152
8.145restart . 153
8.146return . 154

4

8.147revert . 155
8.148RN . 155
8.149round . 156
8.150roundcoefficients . 157
8.151roundcorrectly . 158
8.152roundingwarnings . 159
8.153RU . 160
8.154RZ . 160
8.155searchgal . 160
8.156SG . 161
8.157simplify . 161
8.158simplifysafe . 162
8.159sin . 163
8.160single . 163
8.161sinh . 163
8.162sort . 164
8.163sqrt . 164
8.164string . 164
8.165subpoly . 165
8.166substitute . 165
8.167sup . 166
8.168supnorm . 167
8.169tail . 168
8.170tan . 169
8.171tanh . 169
8.172taylor . 169
8.173taylorform . 170
8.174taylorrecursions . 173
8.175TD . 174
8.176time . 174
8.177timing . 175
8.178tripledouble . 176
8.179true . 176
8.180var . 176
8.181verbosity . 177
8.182void . 178
8.183worstcase . 179
8.184write . 180

9 Appendix: interval arithmetic philosophy in Sollya 182
9.1 Univariate functions . 182
9.2 Bivariate functions . 182

1 Compilation and installation of the Sollya tool

1.1 Compilation dependencies

The Sollya distribution can be compiled and installed using the usual ./configure, make, make

install procedure. Besides a C and a C++ compiler, Sollya needs the following software libraries
and tools to be installed. The ./configure script checks for the installation of the libraries. However
Sollya will build without error if some of its external tools are not installed. In this case an error will
be displayed at runtime.

• GMP

• MPFR

5

• MPFI

• fplll

• libxml2

• gnuplot (external tool)

The use of the external tool rlwrap is highly recommended but not required. Use the -A option of
rlwrap for correctly displayed ANSI X3.64/ ISO/IEC 6429 colored prompts (see below).

1.2 Sollya command line options

Sollya can read input on standard input or in a file whose name is given as an argument when Sollya

is invoked. The tool will always produce its output on standard output, unless specificly instructed by
a particular Sollya command that writes to a file. The following lines are valid invocations of Sollya,
assuming that bash is used as a shell:

~/% sollya

...

~/% sollya myfile.sollya

...

~/% sollya < myfile.sollya

If a file given as an input does not exist, an error message is displayed.
All configurations of the internal state of the tool are done by commands given on the Sollya prompt

or in Sollya scripts. Nevertheless, some command line options are supported; they work at a very basic
I/O-level and can therefore not be implemented as commands.

The following options are supported when calling Sollya:

• --donotmodifystacksize: When invoked, Sollya trys to increase the stack size that is available to
a user process to the maximum size supported by the kernel. On some systems, the correspondent
ioctl does not work properly. Use the option to prevent Sollya from changing the stack size.

• --flush: When this option is given, Sollya will flush all its input and output buffers after parsing
and executing each command resp. sequence of commands. This option is needed when pipes are
used to communicate with Sollya from another program.

• --help: Prints help on the usage of the tool and quits.

• --nocolor: Sollya supports coloring of the output using ANSI X3.64/ ISO/IEC 6429 escape
sequences. Coloring is deactivated when Sollya is connected on standard input to a file that is
not a terminal. This option forces the deactivation of ANSI coloring. This might be necessary on
very old grey-scale terminals or when encountering problems with old versions of rlwrap.

• --noprompt: Sollya prints a prompt symbol when connected on standard input to a pseudo-file
that is a terminal. The option deactivates the prompt.

• --oldautoprint: The behaviour of an undocumented feature for displaying values has changed
in Sollya from version 1.1 to version 2.0. The old feature is deprecated. If you wish to use it
nevertheless, use this deprecated option.

• --oldrlwrapcompatible: This option is deprecated. It makes Sollya emit a non ANSI X3.64
compliant coloring escape sequence for making it compatible with versions of rlwrap that do not
support the -A option. The option is considered a hack since it is known to garble the output of
the tool under some particular circumstances.

• --warninfile[append] <file>: Normally, Sollya emits warning and information messages to-
gether with all other displayed information on either standard output or standard error. This
option allows all warning and information messages to get redirected to a file. The filename to be

6

used must be given after the option. When --warninfile is used, the existing content (if any) of
the file is first removed before writing to the file. With --warninfileappend, the messages are
appended to an existing file. Even if coloring is used for the displaying all other Sollya output,
no coloring sequences are ever written to the file. Let us emphasize on the fact that any file of
a unixoid system can be used for output, for instance also a named pipe. This allows for error
messaging to be performed on a separate terminal. The use of this option is mutually exclusive
with the --warnonstderr option.

• --warnonstderr: Normally, Sollya prints warning and information messages on standard output,
using a warning color when coloring is activated. When this option is given, Sollya will output
all warning and information messages on standard error. Coloring will be used even on standard
error, when activated. The use of this option is mutually exclusive with the --warninfile[append]
option.

2 Introduction

Sollya is an interactive tool for handling numerical functions and working with arbitrary precision.
It can evaluate functions accurately, compute polynomial approximations of functions, automatically
implement polynomials for use in math libraries, plot functions, compute infinity norms, etc. Sollya is
also a full-featured script programming language with support for procedures etc.

Let us begin this manual with an example. Sollya does not allow command line edition; since this
may quickly become uncomfortable, we highly suggest to use the rlwrap tool with Sollya:

~/% rlwrap -A sollya

>

Sollya manipulates only functions in one variable. The first time that an unbound variable is used,
this name is fixed. It will be used to refer to the free variable. For instance, try

> f = sin(x)/x;

> g = cos(y)-1;

Warning: the identifier "y" is neither assigned to, nor bound to a library funct

ion nor external procedure, nor equal to the current free variable.

Will interpret "y" as "x".

> g;

cos(x) - 1

Now, the name x can only be used to refer to the free variable:

> x = 3;

Warning: the identifier "x" is already bound to the free variable, to a library

function, library constant or to an external procedure.

The command will have no effect.

Warning: the last assignment will have no effect.

If you really want to unbind x, you can use the rename command and change the name of the free
variable:

> rename(x,y);

Information: the free variable has been renamed from "x" to "y".

> g;

cos(y) - 1

> x=3;

> x;

3

7

As you have seen, you can name functions and easily work with them. The basic thing to do with a
function is to evaluate it at some point:

> f(-2);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

0.45464871341284084769800993295587242135112748572394

> evaluate(f,-2);

0.45464871341284084769800993295587242135112748572394

The printed value is generally a faithful rounding of the exact value at the working precision (i.e. one
of the two floating-point numbers enclosing the exact value). Internally Sollya represents numbers as
floating-point numbers in arbitrary precision with radix 2: the fact that a faithful rounding is performed
in binary does not imply much on the exactness of the digits displayed in decimal. The working precision
is controlled by the global variable prec:

> prec;

165

> prec=200;

The precision has been set to 200 bits.

> prec;

200

> f(-2);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

0.4546487134128408476980099329558724213511274857239451341894865

Sometimes a faithful rounding cannot easily be computed. In such a case, a value is printed that was
obtained using floating-point approximations without control on the final accuracy:

> log2(5)/log2(17) - log(5)/log(17);

Warning: rounding may have happened.

If there is rounding, the displayed value is *NOT* guaranteed to be a faithful r

ounding of the true result.

0

The philosophy of Sollya is: Whenever something is not exact, print a warning. This explains the
warnings in the previous examples. If the result can be shown to be exact, there is no warning:

> sin(0);

0

Let us finish this Section with a small complete example that shows a bit of what can be done
with Sollya:

8

> restart;

The tool has been restarted.

> prec=50;

The precision has been set to 50 bits.

> f=cos(2*exp(x));

> d=[-1/8;1/8];

> p=remez(f,2,d);

> derivativeZeros = dirtyfindzeros(diff(p-f),d);

> derivativeZeros = inf(d).:derivativeZeros:.sup(d);

> maximum=0;

> for t in derivativeZeros do {

r = evaluate(abs(p-f), t);

if r > maximum then { maximum=r; argmaximum=t; };

};

> print("The infinity norm of", p-f, "is", maximum, "and is reached at", argmaxi

mum);

The infinity norm of -0.416265572875373 + x * (-1.798067209218835 + x * (-3.8971

0727747639e-2)) - cos(2 * exp(x)) is 8.630659443624325e-4 and is reached at -5.8

01672331417684e-2

In this example, we define a function f , an interval d and we compute the best degree-2 polynomial
approximation of f on d with respect to the infinity norm. In other words, maxx∈d{|p(x) − f(x)|} is
minimal amongst polynomials with degree not greater than 2. Then, we compute the list of the zeros of
the derivative of p − f and add the bounds of d to this list. Finally, we evaluate |p − f | for each point
in the list and store the maximum and the point where it is reached. We conclude by printing the result
in a formatted way.

Let us mention as a sidenote that you do not really need to use such a script for computing an infinity
norm; as we will see, the command dirtyinfnorm does this for you.

3 General principles

The first purpose of Sollya is to help people using numerical functions and numerical algorithms in a
safe way. It is first designed to be used interactively but it can also be used in scripts1.

One of the particularities of Sollya is to work with multi-precision arithmetic (it uses the MPFR

library). For safety purposes, Sollya knows how to use interval arithmetic. It uses interval arithmetic
to produce tight and safe results with the precision required by the user.

The general philosophy of Sollya is: When you can perform a computation exactly and sufficiently
quickly, do it; when you cannot, do not, unless you have been explicitly asked for.

The precision of the tool is set by the global variable prec. In general, the variable prec determines
the precision of the outputs of commands: more precisely, the command will internally determine how
much precision should be used during the computations in order to ensure that the output is a faithfully
rounded result with prec bits.

For decidability and efficiency reasons, this general principle cannot be applied every time, so be
careful. Moreover certain commands are known to be unsafe: they give in general excellent results
and give almost prec correct bits in output for everyday examples. However they are merely based on
heuristics and should not be used when the result must be safe. See the documentation of each command
to know precisely how confident you can be with their result.

A second principle (that comes together with the first one) is the following one: When a compu-
tation leads to inexact results, inform the user with a warning. This can be quite irritating in some
circumstances: in particular if you are using Sollya within other scripts. The global variable verbosity

lets you change the level of verbosity of Sollya. When the variable is set to 0, Sollya becomes com-
pletely silent on standard output and prints only very important messages on standard error. Increase
verbosity if you want more information about what Sollya is doing. Please keep in mind that when

1Remark: some of the behaviors of Sollya slightly change when it is used in scripts. For example, no prompt is printed.

9

you affect a value to a global variable, a message is always printed even if verbosity is set to 0. In order
to silently affect a global variable, use !:

> prec=30;

The precision has been set to 30 bits.

> prec=30!;

>

For conviviality reasons, values are displayed in decimal by default. This lets a normal human being
understand the numbers they manipulate. But since constants are internally represented in binary, this
causes permanent conversions that are sources of roundings. Thus you are loosing in accuracy and Sollya

is always complaining about inexact results. If you just want to store or communicate your results (to
another tools for instance) you can use bit-exact representations available in Sollya. The global variable
display defines the way constants are displayed. Here is an example of the five available modes:

> prec=30!;

> a = 17.25;

> display=decimal;

Display mode is decimal numbers.

> a;

1.725e1

> display=binary;

Display mode is binary numbers.

> a;

1.000101_2 * 2^(4)

> display=powers;

Display mode is dyadic numbers in integer-power-of-2 notation.

> a;

69 * 2^(-2)

> display=dyadic;

Display mode is dyadic numbers.

> a;

69b-2

> display=hexadecimal;

Display mode is hexadecimal numbers.

> a;

0x1.14p4

Please keep in mind that it is possible to maintain the general verbosity level at some higher setting
while deactivating all warnings on roundings. This feature is controlled using the roundingwarnings

global variable. It may be set to on or off. By default, the warnings are activated (roundingwarnings
= on) when Sollya is connected on standard input to a pseudo-file that represents a terminal. They are
deactivated when Sollya is connected on standard input to a real file. See 8.152 for further details; the
behavior is illustrated with examples there.

As always, the symbol e means ×10�. The same way the symbol b means ×2�. The symbol p
means ×16� and is used only with the 0x prefix. The prefix 0x indicates that the digits of the following
number until a symbol p or white-space are hexadecimal. The suffix 2 indicates to Sollya that the
previous number has been written in binary. Sollya can parse these notations even if you are not in the
corresponding display mode, so you can always use them.

You can also use memory-dump hexadecimal notation frequently used to represent IEEE 754 double

and single precision numbers. Since this notation does not allow for exactly representing numbers with
arbitrary precision, there is no corresponding display mode. However, the commands printdouble

respectively printsingle round the value to the nearest double respectively single. The number is
then printed in hexadecimal as the integer number corresponding to the memory representation of the
IEEE 754 double or single number:

10

> printdouble(a);

0x4031400000000000

> printsingle(a);

0x418a0000

Sollya can parse these memory-dump hexadecimal notation back in any display mode. The differ-
ence of this memory-dump notation with the hexadecimal notation (as defined above) is made by the
presence or absence of a p indicator.

4 Variables

As already explained, Sollya can manipulate variate functional expressions in one variable. These
expressions contain a unique free variable the name of which is fixed by its first usage in an expression
that is not a left-hand-side of an assignment. This global and unique free variable is a variable in the
mathematical sense of the term.

Sollya also provides variables in the sense programming languages give to the term. These variables,
which must be different in their name from the global free variable, may be global or declared and attached
to a block of statements, i.e. a begin-end-block. These programming language variables may hold any
object of the Sollya language, as for example functional expressions, strings, intervals, constant values,
procedures, external functions and procedures, etc.

Global variables need not to be declared. They start existing, i.e. can be correctly used in expressions
that are not left-hand-sides of assignments, when they are assigned a value in an assignment. Since they
are global, this kind of variables is recommended only for small Sollya scripts. Larger scripts with code
reuse should use declared variables in order to avoid name clashes for example in loop variables.

Declared variables are attached to a begin-end-block. The block structure builds scopes for declared
variables. Declared variables in inner scopes shadow (global and declared) variables of outer scopes. The
global free variable, i.e. the mathematical variable for variate functional expressions in one variable,
cannot be shadowed. Variables are declared using the var keyword. See section 8.180 for details on its
usage and semantic.

The following code examples illustrate the use of variables.

11

> f = exp(x);

> f;

exp(x)

> a = "Hello world";

> a;

Hello world

> b = 5;

> f(b);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

1.48413159102576603421115580040552279623487667593878e2

> {var b; b = 4; f(b); };

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

5.45981500331442390781102612028608784027907370386137e1

> {var x; x = 3; };

Warning: the identifier "x" is already bound to the current free variable.

It cannot be declared as a local variable. The declaration of "x" will have no e

ffect.

Warning: the identifier "x" is already bound to the free variable, to a library

function, library constant or to an external procedure.

The command will have no effect.

Warning: the last assignment will have no effect.

> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };

1

true

5

3

> a;

Hello world

Let us state that a variable identifier, just as every identifier in Sollya, contains at least one character,
starts with a ASCII letter and continues with ASCII letters or numerical digits.

5 Data types

Sollya has a (very) basic system of types. If you try to perform an illicit operation (such as adding a
number and a string, for instance), you will get a typing error. Let us see the available data types.

5.1 Booleans

There are two special values true and false. Boolean expressions can be constructed using the boolean
connectors && (and), || (or), ! (not), and comparisons.

The comparison operators <, <=, > and >= can only be used between two numbers or constant
expressions.

The comparison operators == and != are polymorphic. You can use them to compare any two objects,
like two strings, two intervals, etc. As a matter of fact, polymorphism is allowed on both sides: it is
possible to compare objects of different type. Such objects of different type, as they can never be
syntactically equal, will always compare unequal (see exception for error, section 8.50) and never equal.
It is important to remember that testing the equality between two functions will return true if and only
if the expression trees representing the two functions are exactly the same. See 8.50 for an exception
concerning the special object error. Example:

> 1+x==1+x;

true

12

5.2 Numbers

Sollya represents numbers as binary multi-precision floating-point values. For integer values and values
in dyadic, binary, hexadecimal or memory dump notation, it automatically uses a precision needed
for representing the value exactly (unless this behaviour is overridden using the syntax given below).
Additionally, automatic precision adaption takes place for all integer values (even in decimal notation)
written without the exponent sign e or with the exponent sign e and an exponent sufficiently small that
they are less than 10999. Otherwise the values are represented with the current precision prec. When a
number must be rounded, it is rounded to the precision prec before the expression get evaluated:

> prec=12!;

> 4097.1;

Warning: Rounding occurred when converting the constant "4097.1" to floating-poi

nt with 12 bits.

If safe computation is needed, try to increase the precision.

4098

> 4098.1;

Warning: Rounding occurred when converting the constant "4098.1" to floating-poi

nt with 12 bits.

If safe computation is needed, try to increase the precision.

4098

> 4097.1+1;

Warning: Rounding occurred when converting the constant "4097.1" to floating-poi

nt with 12 bits.

If safe computation is needed, try to increase the precision.

4099

As a matter of fact, each variable has its own precision that corresponds to its intrinsic precision or,
if it cannot be represented, to the value of prec when the variable was set. Thus you can work with
variables having a precision higher than the current precision.

The same way, if you define a function that refers to some constant, this constant is stored in the
function with the current precision and will keep this value in the future, even if prec becomes smaller.

If you define a function that refers to some variable, the precision of the variable is kept, independently
of the current precision:

> prec = 50!;

> a = 4097.1;

Warning: Rounding occurred when converting the constant "4097.1" to floating-poi

nt with 50 bits.

If safe computation is needed, try to increase the precision.

> prec = 12!;

> f = x + a;

> g = x + 4097.1;

Warning: Rounding occurred when converting the constant "4097.1" to floating-poi

nt with 12 bits.

If safe computation is needed, try to increase the precision.

> prec = 120;

The precision has been set to 120 bits.

> f;

4.097099999999998544808477163314819335e3 + x

> g;

4098 + x

In some rare cases, it is necessary to read in decimal constants with a particular precision being used
in the conversion to the binary floating-point format, which Sollya uses. Setting prec to that precision
may prove to be an insufficient means for doing so, for example when several different precisions have to

13

be used in one expression. For these rare cases, Sollya provides the following syntax: decimal constants
may be written %precision%constant, where precision is a constant integer, written in decimal, and
constant is the decimal constant. Sollya will convert the constant constant with precision precision,
regardless of the global variable prec and regardless if constant is an integer or would otherwise be
representable.

> prec = 24;

The precision has been set to 24 bits.

> a = 0.1;

Warning: Rounding occurred when converting the constant "0.1" to floating-point

with 24 bits.

If safe computation is needed, try to increase the precision.

> b = 33554433;

> prec = 64;

The precision has been set to 64 bits.

> display = binary;

Display mode is binary numbers.

> a;

1.10011001100110011001101_2 * 2^(-4)

> 0.1;

Warning: Rounding occurred when converting the constant "0.1" to floating-point

with 64 bits.

If safe computation is needed, try to increase the precision.

1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)

> %24%0.1;

Warning: Rounding occurred when converting the constant "0.1" to floating-point

with 24 bits.

If safe computation is needed, try to increase the precision.

1.10011001100110011001101_2 * 2^(-4)

> c = 33554433;

> b;

1.0000000000000000000000001_2 * 2^(25)

> c;

1.0000000000000000000000001_2 * 2^(25)

> %24%33554433;

Warning: Rounding occurred when converting the constant "33554433" to floating-p

oint with 24 bits.

If safe computation is needed, try to increase the precision.

1_2 * 2^(25)

>

>

Sollya is an environment that uses floating-point arithmetic. The IEEE 754-2008 standard on
floating-point arithmetic does not only define floating-point numbers that represent real numbers but
also floating-point data representing infinities and Not-a-Numbers (NaNs). Sollya also supports infinities
and NaNs in the spirit of the IEEE 754-2008 standard without taking the standard’s choices literally.

• Signed infinities are available through the Sollya objects infty, -infty, @Inf@ and -@Inf@.

• Not-a-Numbers are supported through the Sollya objects NaN and @NaN@. Sollya does not have
support for NaN payloads, signaling or quiet NaNs or signs of NaNs. Signaling NaNs are sup-
ported on input for single and double precision memory notation (see section 3). However, they
immediately get converted to plain Sollya NaNs.

The evaluation of an expression involving a NaN or the evaluation of a function at a point being NaN
always results in a NaN.

14

Infinities are considered to be the limits of expressions tending to infinity. They are supported as
bounds of intervals in some cases. However, particular commands might prohibit their use even though
there might be a mathematical meaning attached to such expressions. For example, while Sollya will
evaluate expressions such as lim

x→−∞
ex, expressed e.g. through evaluate(exp(x),[-infty;0]), it will

not accept to compute the (finite) value of

0∫
−∞

ex dx.

The following examples give an idea of what can be done with Sollya infinities and NaNs. Here is
what can be done with infinities:

> f = exp(x) + 5;

> f(-infty);

5

> evaluate(f,[-infty;infty]);

[5;@Inf@]

> f(infty);

Warning: the given expression is undefined or numerically unstable.

@NaN@

> [-infty;5] * [3;4];

[-@Inf@;20]

> -infty < 5;

true

> log(0);

Warning: the given expression is undefined or numerically unstable.

@NaN@

> [log(0);17];

Warning: the given expression is not a constant but an expression to evaluate

and a faithful evaluation is not possible.

Will use a plain floating-point evaluation, which might yield a completely wrong

value.

Warning: inclusion property is satisfied but the diameter may be greater than th

e least possible.

[-@Inf@;17]

>

And the following example illustrates NaN behavior.

15

> 3/0;

Warning: the given expression is undefined or numerically unstable.

@NaN@

> (-3)/0;

Warning: the given expression is undefined or numerically unstable.

@NaN@

> infty/infty;

Warning: the given expression is undefined or numerically unstable.

@NaN@

> infty + infty;

Warning: the given expression is undefined or numerically unstable.

@Inf@

> infty - infty;

Warning: the given expression is undefined or numerically unstable.

@NaN@

> f = exp(x) + 5;

> f(NaN);

@NaN@

> NaN == 5;

false

> NaN == NaN;

false

> NaN != NaN;

false

> X = "Vive la Republique!";

> !(X == X);

false

> X = 5;

> !(X == X);

false

> X = NaN;

> !(X == X);

true

>

5.3 Rational numbers and rational arithmetic

The Sollya tool is mainly based on floating-point arithmetic: wherever possible, floating-point algo-
rithms, including algorithms using interval arithmetic, are used to produce approximate but safe results.
For some particular cases, floating-point arithmetic is not sufficient: some algorithms just require natural
and rational numbers to be handled exactly. More importantly, for these applications, it is required that
rational numbers be displayed as such.

Sollya implements a particular mode that offers a lightweight support for rational arithmetic. When
needed, it can be enabled by assigning on to the global variable rationalmode. It is disabled by assigning
off; the default is off.

When the mode for rational arithmetic is enabled, Sollya’s behavior will change as follows:

• When a constant expression is given at the Sollya prompt, Sollya will first try to simplify the
expression to a rational number. If such an evaluation to a rational number is possible, Sollya
will display that number as an integer or a fraction of two integers. Only if Sollya is not able
to simplify the constant expression to a rational number, it will launch the default behavior of
evaluating constant expressions to floating-point numbers that are generally faithful roundings of
the expressions.

• When the global mode autosimplify is on, which is the default, Sollya will additionally use
rational arithmetic while trying to simplify expressions given in argument of commands.

16

Even when rationalmode is on, Sollya will not be able to exhibit integer ratios between transcen-
dental quantities. For example, Sollya will not display 1

6 for arcsin
(
1
2

)
/π but 0.16666 Sollya’s

evaluator for rational arithmetic is only able to simplify rational expressions based on addition, subtrac-
tion, multiplication, division, negation, perfect squares (for square root) and integer powers.

The following example illustrates what can and what cannot be done with Sollya’s mode for rational
arithmetic:

> 1/3 - 1/7;

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

0.19047619047619047619047619047619047619047619047619

> rationalmode = on;

Rational mode has been activated.

> 1/3 - 1/7;

4 / 21

> (2 + 1/7)^2 + (6/7)^2 + 2 * (2 + 1/7) * 6/7;

9

> rationalmode = off;

Rational mode has been deactivated.

> (2 + 1/7)^2 + (6/7)^2 + 2 * (2 + 1/7) * 6/7;

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

9

> rationalmode = on;

Rational mode has been activated.

> asin(1)/pi;

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

0.5

> sin(1/6 * pi);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

0.5

> exp(1/7 - 3/21) / 7;

1 / 7

> rationalmode = off;

Rational mode has been deactivated.

> exp(1/7 - 3/21) / 7;

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

0.142857142857142857142857142857142857142857142857145

> print(1/7 - 3/21);

1 / 7 - 3 / 21

> rationalmode = on;

Rational mode has been activated.

> print(1/7 - 3/21);

0

5.4 Intervals and interval arithmetic

Sollya can manipulate intervals that are closed subsets of the real numbers. Several ways of defining
intervals exist in Sollya. There is the most common way where intervals are composed of two numbers
or constant expressions representing the lower and the upper bound. These values are separated either
by commas or semi-colons. Interval bound evaluation is performed in a way that ensures the inclusion
property: all points in the original, unevaluated interval will be contained in the interval with its bounds
evaluated to floating-point numbers.

17

> d=[1;2];

> d2=[1,1+1];

> d==d2;

true

> prec=12!;

> 8095.1;

Warning: Rounding occurred when converting the constant "8095.1" to floating-poi

nt with 12 bits.

If safe computation is needed, try to increase the precision.

8096

> [8095.1; 8096.1];

Warning: Rounding occurred when converting the constant "8095.1" to floating-poi

nt with 12 bits.

If safe computation is needed, try to increase the precision.

Warning: Rounding occurred when converting the constant "8096.1" to floating-poi

nt with 12 bits.

If safe computation is needed, try to increase the precision.

[8094;8098]

Sollya has a mode for printing intervals that are that thin that their bounds have a number of decimal
digits in common when printed. That mode is called midpointmode; see below for an introduction and
section 8.100 for details. As Sollya must be able to parse back its own output, a syntax is provided
to input intervals in midpoint mode. However, please pay attention to the fact that the notation used
in midpoint mode generally increases the width of intervals: hence when an interval is displayed in
midpoint mode and read again, the resulting interval may be wider than the original interval.

> midpointmode = on!;

> [1.725e4;1.75e4];

0.17~2/5~e5

> 0.17~2/5~e5;

0.17~2/5~e5

> midpointmode = off!;

> 0.17~2/5~e5;

[17200;17500]

In some cases, intervals become infinitely thin in theory, in which case one tends to think of point
intervals even if their floating-point representation is not infinitely thin. Sollya provides a very covenient
way for input of such point intervals. Instead of writing [a;a], it is possible to just write [a]. Sollya

will expand the notation while making sure that the inclusion property is satisfied:

> [3];

[3;3]

> [1/7];

Warning: the given expression is not a constant but an expression to evaluate. A

faithful evaluation will be used.

[0.14285713;0.14285716]

> [exp(8)];

Warning: the given expression is not a constant but an expression to evaluate. A

faithful evaluation will be used.

[2.980957e3;2.9809589e3]

When the mode midpointmode is set to on (see 8.100), Sollya will display intervals that are provably
reduced to one point in this extended interval syntax. It will use midpointmode syntax for intervals that
are sufficiently thin but not reduced to one point (see section 8.100 for details):

18

> midpointmode = off;

Midpoint mode has been deactivated.

> [17;17];

[17;17]

> [exp(pi);exp(pi)];

Warning: the given expression is not a constant but an expression to evaluate. A

faithful evaluation will be used.

[2.31406926327792690057290863679485473802661062425987e1;2.3140692632779269005729

0863679485473802661062426015e1]

> midpointmode = on;

Midpoint mode has been activated.

> [17;17];

[17]

> [exp(pi);exp(pi)];

Warning: the given expression is not a constant but an expression to evaluate. A

faithful evaluation will be used.

0.23140692632779269005729086367948547380266106242~5/7~e2

>

Sollya intervals are internally represented with floating-point numbers as bounds; rational numbers
are not supported here. If bounds are defined by constant expressions, these are evaluated to floating-
point numbers using the current precision. Numbers or variables containing numbers keep their precision
for the interval bounds.

Constant expressions get evaluated to floating-point values immediately; this includes π and rational
numbers, even when rationalmode is on (see section 5.3 for this mode).

> prec = 300!;

> a = 4097.1;

Warning: Rounding occurred when converting the constant "4097.1" to floating-poi

nt with 300 bits.

If safe computation is needed, try to increase the precision.

> prec = 12!;

> d = [4097.1; a];

Warning: Rounding occurred when converting the constant "4097.1" to floating-poi

nt with 12 bits.

If safe computation is needed, try to increase the precision.

> prec = 300!;

> d;

[4096;4.0971e3]

> prec = 30!;

> [-pi;pi];

Warning: the given expression is not a constant but an expression to evaluate. A

faithful evaluation will be used.

Warning: the given expression is not a constant but an expression to evaluate. A

faithful evaluation will be used.

[-3.141592659;3.141592659]

You can get the upper-bound (respectively the lower-bound) of an interval with the command sup

(respectively inf). The middle of the interval can be computed with the command mid. Let us also
mention that these commands can also be used on numbers (in that case, the number is interpreted as
an interval containing only one single point. In that case the commands inf, mid and sup are just the
identity):

19

> d=[1;3];

> inf(d);

1

> mid(d);

2

> sup(4);

4

Let us mention that the mid operator never provokes a rounding. It is rewritten as an unevaluated
expression in terms of inf and sup.

Sollya permits intervals to also have non-real bounds, such as infinities or NaNs. When evaluating
certain expressions, in particular given as interval bounds, Sollya will itself generate intervals containing
infinities or NaNs. When evaluation yields an interval with a NaN bound, the given expression is most
likely undefined or numerically unstable. Such results should not be trusted; a warning is displayed.

While computations on intervals with bounds being NaN will always fail, Sollya will try to interpret
infinities in the common way as limits. However, this is not guaranteed to work, even if it is guaranteed
that no unsafe results will be produced. See also section 5.2 for more detail on infinities in Sollya. The
behavior of interval arithmetic on intervals containing infinities or NaNs is subject to debate; moreover,
there is no complete consensus on what should be the result of the evaluation of a function f over an
interval I containing points where f is not defined. Sollya has its own philosophy regarding these
questions. This philosophy is explained in Appendix 9 at the end of this document.

> evaluate(exp(x),[-infty;0]);

[0;1]

> dirtyinfnorm(exp(x),[-infty;0]);

Warning: a bound of the interval is infinite or NaN.

This command cannot handle such intervals.

@NaN@

>

> f = log(x);

> [f(0); f(1)];

Warning: the given expression is not a constant but an expression to evaluate

and a faithful evaluation is not possible.

Will use a plain floating-point evaluation, which might yield a completely wrong

value.

Warning: inclusion property is satisfied but the diameter may be greater than th

e least possible.

[-@Inf@;0]

>

Sollya internally uses interval arithmetic extensively to provide safe answers. In order to provide
for algorithms written in the Sollya language being able to use interval arithmetic, Sollya offers native
support of interval arithmetic. Intervals can be added, subtracted, multiplied, divided, raised to powers,
for short, given in argument to any Sollya function. The tool will apply the rules of interval arithmetic
in order to compute output intervals that safely encompass the hull of the image of the function on the
given interval:

> [1;2] + [3;4];

[4;6]

> [1;2] * [3;4];

[3;8]

> sqrt([9;25]);

[3;5]

> exp(sin([10;100]));

[0.36787942;2.7182819]

20

When such expressions involving intervals are given, Sollya will follow the rules of interval arithmetic
in precision prec for immediately evaluating them to interval enclosures. While Sollya’s evaluator always
guarantees the inclusion property, it also applies some optimisations in some cases in order to make the
image interval as thin as possible. For example, Sollya will use a Taylor expansion based evaluation
if a composed function, call it f , is applied to an interval. In other words, in this case Sollya will
behave as if the evaluate command (see section 8.51) were implicitly used. In most cases, the result
will be different from the one obtained by replacing all occurences of the free variable of a function by
the interval the function is to be evaluated on:

> f = x - sin(x);

> [-1b-10;1b-10] - sin([-1b-10;1b-10]);

[-1.95312484477957829894e-3;1.95312484477957829894e-3]

> f([-1b-10;1b-10]);

[-1.55220421701117626897e-10;1.55220421701117626897e-10]

> evaluate(f,[-1b-10;1b-10]);

[-1.55220421701117626897e-10;1.55220421701117626897e-10]

5.5 Functions

Sollya knows only about functions with one single variable. The first time in a session that an unbound
name is used (without being assigned) it determines the name used to refer to the free variable.

The basic functions available in Sollya are the following:

• +, -, *, /, ^

• sqrt

• abs

• sin, cos, tan, sinh, cosh, tanh

• asin, acos, atan, asinh, acosh, atanh

• exp, expm1 (defined as expm1(x) = exp(x)− 1)

• log (natural logarithm), log2 (binary logarithm), log10 (decimal logarithm), log1p (defined as
log1p(x) = log(1 + x))

• erf, erfc

• halfprecision, single, double, doubleextended, doubledouble, quad, tripledouble (see sec-
tions 8.71, 8.160, 8.43, 8.45, 8.44, 8.134 and 8.178)

• HP, SG, D, DE, DD, QD, TD (see sections 8.71, 8.160, 8.43, 8.45, 8.44, 8.134 and 8.178)

• floor, ceil, nearestint.

The constant π is available through the keyword pi as a 0-ary function:

> display=binary!;

> prec=12!;

> a=pi;

> a;

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

1.10010010001_2 * 2^(1)

> prec=30!;

> a;

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

1.10010010000111111011010101001_2 * 2^(1)

21

The reader may wish to see Sections 8.89 and 8.67 for ways of dynamically adding other base functions
to Sollya.

5.6 Strings

Anything written between quotes is interpreted as a string. The infix operator @ concatenates two strings.
To get the length of a string, use the length function. You can access the i-th character of a string using
brackets (see the example below). There is no character type in Sollya: the i-th character of a string is
returned as a string itself.

> s1 = "Hello "; s2 = "World!";

> s = s1@s2;

> length(s);

12

> s[0];

H

> s[11];

!

Strings may contain the following escape sequences: \\, \¨, \?, \´, \n, \t, \a, \b, \f, \r, \v,
\x[hexadecimal number] and \[octal number]. Refer to the C99 standard for their meaning.

5.7 Particular values

Sollya knows about some particular values. These values do not really have a type. They can be stored
in variables and in lists. A (possibly not exhaustive) list of such values is the following one:

• on, off (see sections 8.111 and 8.110)

• dyadic, powers, binary, decimal, hexadecimal (see sections 8.46, 8.122, 8.18, 8.31 and 8.73)

• file, postscript, postscriptfile (see sections 8.60, 8.119 and 8.120)

• RU, RD, RN, RZ (see sections 8.153, 8.139, 8.148 and 8.154)

• absolute, relative (see sections 8.2 and 8.142)

• floating, fixed (see sections 8.63 and 8.62)

• halfprecision, single, double, doubleextended, doubledouble, quad, tripledouble (see sec-
tions 8.71, 8.160, 8.43, 8.45, 8.44, 8.134 and 8.178)

• HP, SG, D, DE, DD, QD, TD (see sections 8.71, 8.160, 8.43, 8.45, 8.44, 8.134 and 8.178)

• perturb (see section 8.114)

• honorcoeffprec (see section 8.74)

• default (see section 8.32)

• error (see section 8.50)

• void (see section 8.182)

22

5.8 Lists

Objects can be grouped into lists. A list can contain elements with different types. As for strings, you
can concatenate two lists with @. The function length also gives the length of a list.

You can prepend an element to a list using .: and you can append an element to a list using :.

The following example illustrates some features:

> L = [| "foo" |];

> L = L:.1;

> L = "bar".:L;

> L;

[|"bar", "foo", 1|]

> L[1];

foo

> L@L;

[|"bar", "foo", 1, "bar", "foo", 1|]

Lists can be considered arrays and elements of lists can be referenced using brackets. Possible indices
start at 0. The following example illustrates this point:

> L = [|1,2,3,4,5|];

> L;

[|1, 2, 3, 4, 5|]

> L[3];

4

Please be aware of the fact that the complexity for accessing an element of the list using indices
is O(n), where n is the length of the whole list.

Lists may contain ellipses indicated by ,..., between elements that are constant and evaluate to
integers that are incrementally ordered. Sollya translates such ellipses to the full list upon evaluation.
The use of ellipses between elements that are not constants is not allowed. This feature is provided for
ease of programming; remark that the complexity for expanding such lists is high. For illustration, see
the following example:

> [|1,...,5|];

[|1, 2, 3, 4, 5|]

> [|-5,...,5|];

[|-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5|]

> [|3,...,1|];

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

> [|true,...,false|];

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

Lists may be continued to infinity by means of the ... indicator after the last element given. At least
one element must explicitly be given. If the last element given is a constant expression that evaluates to
an integer, the list is considered as continued to infinity by all integers greater than that last element. If
the last element is another object, the list is considered as continued to infinity by re-duplicating this last
element. Let us remark that bracket notation is supported for such end-elliptic lists even for implicitly
given elements. However, evaluation complexity is high. Combinations of ellipses inside a list and in its
end are possible. The usage of lists described here is best illustrated by the following examples:

23

> L = [|1,2,true,3...|];

> L;

[|1, 2, true, 3...|]

> L[2];

true

> L[3];

3

> L[4];

4

> L[1200];

1200

> L = [|1,...,5,true...|];

> L;

[|1, 2, 3, 4, 5, true...|]

> L[1200];

true

5.9 Structures

In a similar way as in lists, Sollya allows data to be grouped in – untyped – structures. A structure
forms an object to which other objects can be added as elements and identified by their names. The
elements of a structure can be retrieved under their name and used as usual. The following sequence
shows that point:

> s.a = 17;

> s.b = exp(x);

> s.a;

17

> s.b;

exp(x)

> s.b(1);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

2.71828182845904523536028747135266249775724709369998

> s.d.a = [-1;1];

> s.d.b = sin(x);

> inf(s.d.a);

-1

> diff(s.d.b);

cos(x)

Structures can also be defined literally using the syntax illustrated in the next example. They will
also be printed in that syntax.

24

> a = { .f = exp(x), .dom = [-1;1] };

> a;

{ .f = exp(x), .dom = [-1;1] }

> a.f;

exp(x)

> a.dom;

[-1;1]

> b.f = sin(x);

> b.dom = [-1b-5;1b-5];

> b;

{ .dom = [-3.125e-2;3.125e-2], .f = sin(x) }

> { .f = asin(x), .dom = [-1;1] }.f(1);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

1.57079632679489661923132169163975144209858469968754

If the variable a is bound to an existing structure, it is possible to use the “dot notation” a.b to
assign the value of the field b of the structure a. This works even if b is not yet a field of a: in this case
a new field is created inside the structure a.

Besides, the dot notation can be used even when a is unassigned. In this case a new structure is
created with a field b, and this structure is bound to a. However, the dot notation cannot be used if a

is already bound to something that is not a structure.
These principles apply recursively: for instance, if a is a structure that contains only one field d, the

command a.b.c = 3 creates a new field named b inside the structure a; this field itself is a structure
containing the field c. The command a.d.c = 3 is allowed if a.d is already a structure, but forbidden
otherwise (e.g. if a.d was equal to sin(x)). This is summed up in the following example.

> restart;

The tool has been restarted.

> a.f = exp(x);

> a.dom = [-1;1];

> a.info.text = "My akrnoximation problem";

> a;

{ .info = { .text = "My akrnoximation problem" }, .dom = [-1;1], .f = exp(x) }

>

> a.info.text = "My approximation problem";

> a;

{ .info = { .text = "My approximation problem" }, .dom = [-1;1], .f = exp(x) }

>

> b = exp(x);

> b.a = 5;

Warning: cannot modify an element of something that is not a structure.

Warning: the last assignment will have no effect.

> b;

exp(x)

>

> a.dom.a = -1;

Warning: cannot modify an element of something that is not a structure.

Warning: the last assignment will have no effect.

> a;

{ .info = { .text = "My approximation problem" }, .dom = [-1;1], .f = exp(x) }

When printed, the elements of a structure are not sorted in any manner. They get printed in an
arbitrary order that just maintains the order given in the definition of literate structures. That said,
when compared, two structures compare equal iff they contain the same number of identifiers, with the

25

same names and iff the elements of corresponding names all compare equal. This means the order does
not matter in comparisons and otherwise does only for printing.

The following example illustrates this matter:

> a = { .f = exp(x), .a = -1, .b = 1 };

> a;

{ .f = exp(x), .a = -1, .b = 1 }

> a.info = "My function";

> a;

{ .info = "My function", .f = exp(x), .a = -1, .b = 1 }

>

> b = { .a = -1, .f = exp(x), .info = "My function", .b = 1 };

> b;

{ .a = -1, .f = exp(x), .info = "My function", .b = 1 }

>

> a == b;

true

>

> b.info = "My other function";

> a == b;

false

>

> b.info = "My function";

> a == b;

true

> b.something = true;

> a == b;

false

6 Iterative language elements: assignments, conditional state-
ments and loops

6.1 Blocks

Statements in Sollya can be grouped in blocks, so-called begin-end-blocks. This can be done using the
key tokens { and }. Blocks declared this way are considered to be one single statement. As already
explained in section 4, using begin-end-blocks also opens the possibility of declaring variables through
the keyword var.

6.2 Assignments

Sollya has two different assignment operators, = and :=. The assignment operator = assigns its right-
hand-object “as is”, i.e. without evaluating functional expressions. For instance, i = i + 1; will
dereferentiate the identifier i with some content, notate it y, build up the expression (function) y + 1
and assign this expression back to i. In the example, if i stood for the value 1000, the statement i = i

+ 1; would assign “1000 + 1” – and not “1001” – to i. The assignment operator := evaluates constant
functional expressions before assigning them. On other expressions it behaves like =. Still in the example,
the statement i := i + 1; really assigns 1001 to i.

Both Sollya assignment operators support indexing of lists or strings elements using brackets on the
left-hand-side of the assignment operator. The indexed element of the list or string gets replaced by the
right-hand-side of the assignment operator. When indexing strings this way, that right-hand side must
evaluate to a string of length 1. End-elliptic lists are supported with their usual semantic for this kind
of assignment. When referencing and assigning a value in the implicit part of the end-elliptic list, the
list gets expanded to the corresponding length.

The following examples well illustrate the behavior of assignment statements:

26

> autosimplify = off;

Automatic pure tree simplification has been deactivated.

> i = 1000;

> i = i + 1;

> print(i);

1000 + 1

> i := i + 1;

> print(i);

1002

> L = [|1,...,5|];

> print(L);

[|1, 2, 3, 4, 5|]

> L[3] = L[3] + 1;

> L[4] := L[4] + 1;

> print(L);

[|1, 2, 3, 4 + 1, 6|]

> L[5] = true;

> L;

[|1, 2, 3, 5, 6, true|]

> s = "Hello world";

> s;

Hello world

> s[1] = "a";

> s;

Hallo world

> s[2] = "foo";

Warning: the string to be assigned is not of length 1.

This command will have no effect.

> L = [|true,1,...,5,9...|];

> L;

[|true, 1, 2, 3, 4, 5, 9...|]

> L[13] = "Hello";

> L;

[|true, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, "Hello"...|]

The indexing of lists on left-hand sides of assignments is reduced to the first order. Multiple indexing
of lists of lists on assignment is not supported for complexity reasons. Multiple indexing is possible in
right-hand sides.

> L = [| 1, 2, [|"a", "b", [|true, false|] |] |];

> L[2][2][1];

false

> L[2][2][1] = true;

Warning: the first element of the left-hand side is not an identifier.

This command will have no effect.

> L[2][2] = "c";

Warning: the first element of the left-hand side is not an identifier.

This command will have no effect.

> L[2] = 3;

> L;

[|1, 2, 3|]

6.3 Conditional statements

Sollya supports conditional statements expressed with the keywords if, then and optionally else. Let
us mention that only conditional statements are supported and not conditional expressions.

27

The following examples illustrate both syntax and semantic of conditional statements in Sollya.
Concerning syntax, be aware that there must not be any semicolon before the else keyword.

> a = 3;

> b = 4;

> if (a == b) then print("Hello world");

> b = 3;

> if (a == b) then print("Hello world");

Hello world

> if (a == b) then print("You are telling the truth") else print("Liar!");

You are telling the truth

6.4 Loops

Sollya supports three kinds of loops. General while-condition loops can be expressed using the keywords
while and do. One has to be aware of the fact that the condition test is executed always before the loop,
there is no do-until-condition loop. Consider the following examples for both syntax and semantic:

> verbosity = 0!;

> prec = 30!;

> i = 5;

> while (expm1(i) > 0) do { expm1(i); i := i - 1; };

1.474131591e2

5.359815e1

1.908553692e1

6.3890561

1.718281827

> print(i);

0

The second kind of loops are loops on a variable ranging from a numerical start value and a end
value. These kind of loops can be expressed using the keywords for, from, to, do and optionally by.
The by statement indicates the width of the steps on the variable from the start value to the end value.
Once again, syntax and semantic are best explained with an example:

> for i from 1 to 5 do print ("Hello world",i);

Hello world 1

Hello world 2

Hello world 3

Hello world 4

Hello world 5

> for i from 2 to 1 by -0.5 do print("Hello world",i);

Hello world 2

Hello world 1.5

Hello world 1

The third kind of loops are loops on a variable ranging on values contained in a list. In order to
ensure the termination of the loop, that list must not be end-elliptic. The loop is expressed using the
keywords for, in and do as in the following examples:

28

> L = [|true, false, 1,...,4, "Hello", exp(x)|];

> for i in L do i;

true

false

1

2

3

4

Hello

exp(x)

For both types of for loops, assigning the loop variable is allowed and possible. When the loop
terminates, the loop variable will contain the value that made the loop condition fail. Consider the
following examples:

> for i from 1 to 5 do { if (i == 3) then i = 4 else i; };

1

2

5

> i;

6

7 Functional language elements: procedures and pattern match-
ing

7.1 Procedures

Sollya has some elements of functional languages. In order to avoid confusion with mathematical
functions, the associated programming objects are called procedures in Sollya.

Sollya procedures are common objects that can be, for example, assigned to variables or stored in
lists. Procedures are declared by the proc keyword; see section 8.131 for details. The returned procedure
object must then be assigned to a variable. It can hence be applied to arguments with common application
syntax. The procedure keyword provides an abbreviation for declaring and assigning a procedure; see
section 8.132 for details.

Sollya procedures can return objects using the return keyword at the end of the begin-end-block
of the procedure. Section 8.146 gives details on the usage of return. Procedures further can take any
type of object in argument, in particular also other procedures that are then applied to arguments.
Procedures can be declared inside other procedures.

Common Sollya procedures are declared with a certain number of formal parameters. When the
procedure is applied to actual parameters, a check is performed if the right number of actual parameters
is given. Then the actual parameters are applied to the formal parameters. In some cases, it is required
that the number of parameters of a procedure be variable. Sollya provides support for the case with
procedures with an arbitrary number of actual arguments. When the procedure is called, those actual
arguments are gathered in a list which is applied to the only formal list parameter of a procedure with
an arbitrary number of arguments. See section 8.132 for the exact syntax and details; an example is
given just below.

Let us remark that declaring a procedure does not involve any evaluation or other interpretation
of the procedure body. In particular, this means that constants are evaluated to floating-point values
inside Sollya when the procedure is applied to actual parameters and the global precision valid at this
moment.

Sollya procedures are well illustrated with the following examples:

29

> succ = proc(n) { return n + 1; };

> succ(5);

6

> 3 + succ(0);

4

> succ;

proc(n)

{

nop;

return (n) + (1);

}

> add = proc(m,n) { var res; res := m + n; return res; };

> add(5,6);

11

> hey = proc() { print("Hello world."); };

> hey();

Hello world.

> print(hey());

Hello world.

void

> hey;

proc()

{

print("Hello world.");

return void;

}

> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);

return res; };

> fac(5);

120

> fac(11);

39916800

> fac;

proc(n)

{

var res;

if (n) == (0) then

res := 1

else

res := (n) * (fac((n) - (1)));

return res;

}

30

> sumall = proc(args = ...) { var i, acc; acc = 0; for i in args do acc = acc +

i; return acc; };

> sumall;

proc(args = ...)

{

var i, acc;

acc = 0;

for i in args do

acc = (acc) + (i);

return acc;

}

> sumall();

0

> sumall(1);

1

> sumall(1,5);

6

> sumall(1,5,9);

15

> sumall @ [|1,5,9,4,8|];

27

>

Sollya also supports external procedures, i.e. procedures written in C (or some other language) and
dynamically bound to Sollya identifiers. See 8.58 for details.

7.2 Pattern matching

Starting with version 3.0, Sollya supports matching expressions with expression patterns. This feature
is important for an extended functional programming style. Further, and most importantly, it allows
expression trees to be recursively decomposed using native constructs of the Sollya language. This means
no help from external procedures or other compiled-language mechanisms is needed here anymore.

Basically, pattern matching supports relies on one Sollya construct:

match expr with

pattern1 : (return-expr1)
pattern2 : (return-expr2)
...

patternN : (return-exprN)

That construct has the following semantic: try to match the expression expr with the patterns pattern1
through patternN, proceeding in natural order. If a pattern patternI is found that matches, evaluate
the whole match ... with construct to the return expression return-exprI associated with the matching
pattern patternI. If no matching pattern is found, display an error warning and return error. Note that
the parentheses around the expressions return-exprI are mandatory.

Matching a pattern means the following:

• If a pattern does not contain any programming-language-level variables (different from the free
mathematical variable), it matches expressions that are syntactically equal to itself. For instance,
the pattern exp(sin(3 * x)) will match the expression exp(sin(3 * x)), but it does not match
exp(sin(x * 3)) because the expressions are not syntactically equal.

• If a pattern does contain variables, it matches an expression expr if these variables can be bound
to subexpressions of expr such that once the pattern is evaluated with that variable binding, it
becomes syntactically equal to the expression expr. For instance, the pattern exp(sin(a * x)) will
match the expression exp(sin(3 * x)) as it is possible to bind a to 3 such that exp(sin(a * x))

evaluates to exp(sin(3 * x)).

31

If a pattern patternI with variables is matched in a match ... with construct, the variables in the
pattern stay bound during the evaluation of the corresponding return expression return-exprI. This allows
subexpressions to be extracted from expressions and/or recursively handled as needed.

The following examples illustrate the basic principles of pattern matching in Sollya:

> match exp(x) with

exp(x) : (1)

sin(x) : (2)

default : (3);

1

>

> match sin(x) with

exp(x) : (1)

sin(x) : (2)

default : (3);

2

>

> match exp(sin(x)) with

exp(x) : ("Exponential of x")

exp(sin(x)) : ("Exponential of sine of x")

default : ("Something else");

Exponential of sine of x

>

> match exp(sin(x)) with

exp(x) : ("Exponential of x")

exp(a) : ("Exponential of " @ a)

default : ("Something else");

Exponential of sin(x)

>

>

> procedure differentiate(f) {

return match f with

g + h : (differentiate(g) + differentiate(h))

g * h : (differentiate(g) * h + differentiate(h) * g)

g / h : ((differentiate(g) * h - differentiate(h) * g) / (h^2))

exp(x) : (exp(x))

sin(x) : (cos(x))

cos(x) : (-sin(x))

g(h) : ((differentiate(g))(h) * differentiate(h))

x : (1)

h(x) : (NaN)

c : (0);

};

>

> differentiate(exp(sin(x + x)));

exp(sin(x * 2)) * cos(x * 2) * 2

> diff(exp(sin(x + x)));

exp(sin(x * 2)) * cos(x * 2) * 2

>

As Sollya is not a purely functional language, the match ... with construct can also be used in a
more imperative style, which makes it become closer to constructs like switch in C or Perl. In lieu of
a simple return expression, a whole block of imperative statements can be given. The expression to be
returned by that block is indicated in the end of the block, using the return keyword. That syntax is
illustrated in the next example:

32

> match exp(sin(x)) with

exp(a) : {

write("Exponential of ", a, "\n");

return a;

}

sin(x) : {

var foo;

foo = 17;

write("Sine of x\n");

return foo;

}

default : {

write("Something else\n");

bashexecute("LANG=C date");

return true;

};

Exponential of sin(x)

sin(x)

>

> match sin(x) with

exp(a) : {

write("Exponential of ", a, "\n");

return a;

}

sin(x) : {

var foo;

foo = 17;

write("Sine of x\n");

return foo;

}

default : {

write("Something else\n");

bashexecute("LANG=C date");

return true;

};

Sine of x

17

>

> match acos(17 * pi * x) with

exp(a) : {

write("Exponential of ", a, "\n");

return a;

}

sin(x) : {

var foo;

foo = 17;

write("Sine of x\n");

return foo;

}

default : {

write("Something else\n");

bashexecute("LANG=C date");

return true;

};

Something else

Mon May 2 10:36:35 CEST 2011

true

33

In the case when no return statement is indicated for a statement-block in a match ... with con-
struct, the construct evaluates to the special value void if that pattern matches.

In order to well understand pattern matching in Sollya, it is important to realize the meaning
of variables in patterns. This meaning is different from the one usually found for variables. In a
pattern, variables are never evaluated to whatever they might have set before the pattern is executed.
In contrast, all variables in patterns are new, free variables that will freshly be bound to subexpressions
of the matching expression. If a variable of the same name already exists, it will be shadowed during the
evaluation of the statement block and the return expression corresponding to the matching expression.
This type of semantic implies that patterns can never be computed at run-time, they must always be
hard-coded beforehand. However this is necessary to make pattern matching context-free.

As a matter of course, all variables figuring in the expression expr to be matched are evaluated before
pattern matching is attempted. In fact, expr is a usual Sollya expression, not a pattern.

In Sollya, the use of variables in patterns does not need to be linear. This means the same variable
might appear twice or more in a pattern. Such a pattern will only match an expression if it contains the
same subexpression, associated with the variable, in all places indicated by the variable in the pattern.

The following examples illustrate the use of variables in patterns in detail:

> a = 5;

> b = 6;

> match exp(x + 3) with

exp(a + b) : {

print("Exponential");

print("a = ", a);

print("b = ", b);

}

sin(x) : {

print("Sine of x");

};

Exponential

a = x

b = 3

> print("a = ", a, ", b = ", b);

a = 5 , b = 6

>

> a = 5;

> b = 6;

> match exp(x + 3) with

exp(a + b) : {

var a, c;

a = 17;

c = "Hallo";

print("Exponential");

print("a = ", a);

print("b = ", b);

print("c = ", c);

}

sin(x) : {

print("Sine of x");

};

Exponential

a = 17

b = 3

c = Hallo

> print("a = ", a, ", b = ", b);

a = 5 , b = 6

34

> match exp(sin(x)) + sin(x) with

exp(a) + a : {

print("Winner");

print("a = ", a);

}

default : {

print("Loser");

};

Winner

a = sin(x)

>

> match exp(sin(x)) + sin(3 * x) with

exp(a) + a : {

print("Winner");

print("a = ", a);

}

default : {

print("Loser");

};

Loser

>

> f = exp(x);

> match f with

sin(x) : (1)

cos(x) : (2)

exp(x) : (3)

default : (4);

3

Pattern matching is meant to be a means to decompose expressions structurally. For this reason
and in an analogous way to variables, no evaluation is performed at all on (sub-)expressions that form
constant functions. As a consequence, patterns match constant expressions only if they are structurally
identical. For example 5 + 1 only matches 5 + 1 and not 1 + 5, 3 + 3 nor 6.

This general rule on constant expressions admits one exception. Intervals in Sollya can be defined
using constant expressions as bounds. These bounds are immediately evaluated to floating-point con-
stants, though. In order to permit pattern matching on intervals, constant expressions given as bounds
of intervals that form patterns are evaluated before pattern matching. However, in order not conflict
with the rules of no evaluation of variables, these constant expressions as bounds of intervals in patterns
must not contain free variables.

35

> match 5 + 1 with

1 + 5 : ("One plus five")

6 : ("Six")

5 + 1 : ("Five plus one");

Five plus one

>

> match 6 with

1 + 5 : ("One plus five")

6 : ("Six")

5 + 1 : ("Five plus one");

Six

>

> match 1 + 5 with

1 + 5 : ("One plus five")

6 : ("Six")

5 + 1 : ("Five plus one");

One plus five

>

> match [1; 5 + 1] with

[1; 1 + 5] : ("Interval from one to one plus five")

[1; 6] : ("Interval from one to six")

[1; 5 + 1] : ("Interval from one to five plus one");

Interval from one to one plus five

>

> match [1; 6] with

[1; 1 + 5] : ("Interval from one to one plus five")

[1; 6] : ("Interval from one to six")

[1; 5 + 1] : ("Interval from one to five plus one");

Interval from one to one plus five

>

The Sollya keyword default has a special meaning in patterns. It acts like a wild-card, matching any
(sub-)expression, as long as the whole expression stays correctly typed. Upon matching with default,
no variable gets bound. This feature is illustrated in the next example:

36

> match exp(x) with

sin(x) : ("Sine of x")

atan(x^2) : ("Arctangent of square of x")

default : ("Something else")

exp(x) : ("Exponential of x");

Something else

>

> match atan(x^2) with

sin(x) : ("Sine of x")

atan(default^2) : ("Arctangent of the square of something")

default : ("Something else");

Arctangent of the square of something

>

> match atan(exp(x)^2) with

sin(x) : ("Sine of x")

atan(default^2) : ("Arctangent of the square of something")

default : ("Something else");

Arctangent of the square of something

>

> match exp("Hello world") with

exp(default) : ("A miracle has happened")

default : ("Something else");

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

In Sollya, pattern matching is possible on the following Sollya types and operations defined on
them:

• Expressions that define univariate functions, as explained above,

• Intervals with one, two or no bound defined in the pattern by a variable,

• Character sequences, literate or defined using the @ operator, possibly with a variable on one of
the sides of the @ operator,

• Lists, literate, literate with variables or defined using the .:, :. and @ operators, possibly with a
variable on one of the sides of the @ operator or one or two variables for .: and :.,

• Structures, literate or literate with variables, and

• All other Sollya objects, matchable with themselves (DE matches DE, on matches on, perturb

matches perturb etc.)

37

> procedure detector(obj) {

match obj with

exp(a * x) : { "Exponential of ", a, " times x"; }

[a; 17] : { "An interval from ", a, " to 17"; }

[| |] : { "Empty list"; }

[| a, b, 2, exp(c) |] : { "A list of ", a, ", ", b, ", 2 and ",

"exponential of ", c; }

a @ [| 2, 3 |] : { "Concatenation of the list ", a, " and ",

"the list of 2 and 3"; }

a .: [| 9 ... |] : { a, " prepended to all integers >= 9"; }

"Hello" @ w : { "Hello concatenated with ", w; }

{ .a = sin(b);

.b = [c;d] } : { "A structure containing as .a the ",

"sine of ", b,

" and as .b the range from ", c,

" to ", d; }

perturb : { "The special object perturb"; }

default : { "Something else"; };

};

>

> detector(exp(5 * x));

Exponential of 5 times x

> detector([3.25;17]);

An interval from 3.25 to 17

> detector([||]);

Empty list

> detector([| sin(x), nearestint(x), 2, exp(5 * atan(x)) |]);

A list of sin(x), nearestint(x), 2 and exponential of 5 * atan(x)

> detector([| sin(x), cos(5 * x), "foo", 2, 3 |]);

Concatenation of the list [|sin(x), cos(x * 5), "foo"|] and the list of 2 and 3

> detector([| DE, 9... |]);

doubleextended prepended to all integers >= 9

> detector("Hello world");

Hello concatenated with world

> detector({ .a = sin(x); .c = "Hello"; .b = [9;10] });

A structure containing as .a the sine of x and as .b the range from 9 to 10

> detector(perturb);

The special object perturb

> detector([13;19]);

Something else

Concerning intervals, please pay attention to the fact that expressions involving intervals are imme-
diately evaluated and that structural pattern matching on functions on intervals is not possible. This
point is illustrated in the next example:

38

> match exp([1;2]) with

[a;b] : {

a,", ",b;

}

default : {

"Something else";

};

2.71828182845904523536028747135266249775724709369989, 7.389056098930650227230427

4605750078131803155705518

>

> match exp([1;2]) with

exp([a;b]) : {

a,", ", b;

}

default : {

"Something else";

};

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

>

> match exp([1;2]) with

exp(a) : {

"Exponential of ", a;

}

default : {

"Something else";

};

Something else

With respect to pattern matching on lists or character sequences defined using the @ operator, the
following is to be mentionned:

• Patterns like a @ b are not allowed as they would need to perform an ambiguous cut of the list or
character sequence to be matched. This restriction is maintained even if the variables (here a and
b) are constrained by other occurrences in the pattern (for example in a list) which would make
the cut unambiguous.

• Recursive use of the @ operator (even mixed with the operators .: and :.) is possible under the
condition that there must not exist any other parenthezation of the term in concatenations (@)
such that the rule of one single variable for @ above gets violated. For instance, ([| 1 |] @ a)

@ (b @ [| 4 |]) is not possible as it can be re-parenthesized [| 1 |] @ (a @ b) @ [| 4 |],
which exhibits the ambiguous case.

These points are illustrated in this example:

39

> match [| exp(sin(x)), sin(x), 4, DE(x), 9... |] with

exp(a) .: (a .: (([||] :. 4) @ (b @ [| 13... |]))) :

{ "a = ", a, ", b = ", b; };

a = sin(x), b = [|doubleextended(x), 9, 10, 11, 12|]

>

> match [| 1, 2, 3, 4, D... |] with

a @ [| 4, D...|] : (a);

[|1, 2, 3|]

>

> match [| 1, 2, 3, 4, D... |] with

a @ [| D...|] : (a);

[|1, 2, 3, 4|]

>

> match [| 1, 2, 3, 4... |] with

a @ [| 3...|] : (a);

[|1, 2|]

>

> match [| 1, 2, 3, 4... |] with

a @ [| 4...|] : (a);

[|1, 2, 3|]

>

> match [| 1, 2, 3, 4... |] with

a @ [| 17...|] : (a);

[|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16|]

>

> match [| 1, 2, 3, 4... |] with

a @ [| 17, 18, 19 |] : (a)

default : ("Something else");

Something else

As mentionned above, pattern matching on Sollya structures is possible. Patterns for such a match
are given in a literately, i.e. using the syntax { .a = exprA, .b = exprB, . . . }. A structure pattern
sp will be matched by a structure s iff that structure s contains at least all the elements (like .a, .b
etc.) of the structure pattern sp and iff each of the elements of the structure s matches the pattern in
the corresponding element of the structure pattern sp. The user should be aware of the fact that the
structure to be matched is only supposed to have at least the elements of the pattern but that it may
contain more elements is a particular Sollya feature. For instance with pattern matching, it is hence
possible to ensure that access to particular elements will be possible in a particular code segment. The
following example is meant to clarify this point:

40

> structure.f = exp(x);

> structure.dom = [1;2];

> structure.formats = [| DD, D, D, D |];

> match structure with

{ .f = sin(x);

.dom = [a;b]

} : { "Sine, ",a,", ",b; }

{ .f = exp(c);

.dom = [a;b];

.point = default

} : { "Exponential, ",a, ", ", b, ", ", c; }

{ .f = exp(x);

.dom = [a;b]

} : { "Exponential, ",a, ", ", b; }

default : { "Something else"; };

Exponential, 1, 2

>

> structure.f = sin(x);

> match structure with

{ .f = sin(x);

.dom = [a;b]

} : { "Sine, ",a,", ",b; }

{ .f = exp(c);

.dom = [a;b];

.point = default

} : { "Exponential, ",a, ", ", b, ", ", c; }

{ .f = exp(x);

.dom = [a;b]

} : { "Exponential, ",a, ", ", b; }

default : { "Something else"; };

Sine, 1, 2

>

> structure.f = exp(x + 2);

> structure.point = 23;

> match structure with

{ .f = sin(x);

.dom = [a;b]

} : { "Sine, ",a,", ",b; }

{ .f = exp(c);

.dom = [a;b];

.point = default

} : { "Exponential, ",a, ", ", b, ", ", c; }

{ .f = exp(x);

.dom = [a;b]

} : { "Exponential, ",a, ", ", b; }

default : { "Something else"; };

Exponential, 1, 2, 2 + x

8 Commands and functions

8.1 abs

Name: abs
the absolute value.
Description:

41

• abs is the absolute value function. abs(x)=

{
x x > 0
−x x ≤ 0

.

8.2 absolute

Name: absolute
indicates an absolute error for externalplot, fpminimax or supnorm
Usage:

absolute : absolute|relative

Description:

• The use of absolute in the command externalplot indicates that during plotting in externalplot
an absolute error is to be considered.

See externalplot for details.

• Used with fpminimax, absolute indicates that fpminimax must try to minimize the absolute
error.

See fpminimax for details.

• When given in argument to supnorm, absolute indicates that an absolute error is to be considered
for supremum norm computation.

See supnorm for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");

> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l

mpfr");

> externalplot("./externalplotexample",absolute,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.57), fpminimax (8.65), relative (8.142), bashexecute (8.17), supnorm
(8.168)

8.3 accurateinfnorm

Name: accurateinfnorm
computes a faithful rounding of the infinity norm of a function
Usage:

accurateinfnorm(function,range,constant) : (function, range, constant) → constant
accurateinfnorm(function,range,constant,exclusion range 1,...,exclusion range n) : (function, range,

constant, range, ..., range) → constant

Parameters:

• function represents the function whose infinity norm is to be computed

• range represents the infinity norm is to be considered on

• constant represents the number of bits in the significant of the result

• exclusion range 1 through exclusion range n represent ranges to be excluded

Description:

42

• The command accurateinfnorm computes an upper bound to the infinity norm of function func-
tion in range. This upper bound is the least floating-point number greater than the value of the
infinity norm that lies in the set of dyadic floating point numbers having constant significant man-
tissa bits. This means the value accurateinfnorm evaluates to is at the time an upper bound and
a faithful rounding to constant bits of the infinity norm of function function on range range.

If given, the fourth and further arguments of the command accurateinfnorm, exclusion range 1
through exclusion range n the infinity norm of the function function is not to be considered on.

• Users should be aware about the fact that the algorithm behind accurateinfnorm is highly in-
efficient and that other, better suited algorithms, such as supnorm, are available inside Sollya.
As a matter of fact, while accurateinfnorm is maintained for compatibility reasons with legacy
Sollya codes, users are advised to avoid using accurateinfnorm in new Sollya scripts and to
replace it, where possible, by the supnorm command.

Example 1:

> p = remez(exp(x), 5, [-1;1]);

> accurateinfnorm(p - exp(x), [-1;1], 20);

4.52055246569216251373291015625e-5

> accurateinfnorm(p - exp(x), [-1;1], 30);

4.520552107578623690642416477203369140625e-5

> accurateinfnorm(p - exp(x), [-1;1], 40);

4.5205521043867324948450914234854280948638916015625e-5

Example 2:

> p = remez(exp(x), 5, [-1;1]);

> midpointmode = on!;

> infnorm(p - exp(x), [-1;1]);

0.45205~5/7~e-4

> accurateinfnorm(p - exp(x), [-1;1], 40);

4.5205521043867324948450914234854280948638916015625e-5

See also: infnorm (8.82), dirtyinfnorm (8.39), supnorm (8.168), checkinfnorm (8.22), remez
(8.143), diam (8.35)

8.4 acos

Name: acos
the arccosine function.
Description:

• acos is the inverse of the function cos: acos(y) is the unique number x ∈ [0;π] such that cos(x)=y.

• It is defined only for y ∈ [−1; 1].

See also: cos (8.26)

8.5 acosh

Name: acosh
the arg-hyperbolic cosine function.
Description:

• acosh is the inverse of the function cosh: acosh(y) is the unique number x ∈ [0; +∞] such that
cosh(x)=y.

• It is defined only for y ∈ [0; +∞].

See also: cosh (8.27)

43

8.6 &&

Name: &&
boolean AND operator
Usage:

expr1 && expr2 : (boolean, boolean) → boolean

Parameters:

• expr1 and expr2 represent boolean expressions

Description:

• && evaluates to the boolean AND of the two boolean expressions expr1 and expr2. && evaluates
to true iff both expr1 and expr2 evaluate to true.

Example 1:

> true && false;

false

Example 2:

> (1 == exp(0)) && (0 == log(1));

true

See also: || (8.112), ! (8.107)

8.7 :.

Name: :.
add an element at the end of a list.
Usage:

L:.x : (list, any type) → list

Parameters:

• L is a list (possibly empty).

• x is an object of any type.

Description:

• :. adds the element x at the end of the list L.

• Note that since x may be of any type, it can in particular be a list.

Example 1:

> [|2,3,4|]:.5;

[|2, 3, 4, 5|]

Example 2:

> [|1,2,3|]:.[|4,5,6|];

[|1, 2, 3, [|4, 5, 6|]|]

Example 3:

> [||]:.1;

[|1|]

See also: .: (8.125), @ (8.24)

44

8.8 ∼
Name: ∼
floating-point evaluation of a constant expression
Usage:

∼ expression : function → constant
∼ something : any type → any type

Parameters:

• expression stands for an expression that is a constant

• something stands for some language element that is not a constant expression

Description:

• ∼ expression evaluates the expression that is a constant term to a floating-point constant. The
evaluation may involve a rounding. If expression is not a constant, the evaluated constant is a
faithful rounding of expression with precision bits, unless the expression is exactly 0 as a result
of cancellation. In the latter case, a floating-point approximation of some (unknown) accuracy is
returned.

• ∼ does not do anything on all language elements that are not a constant expression. In other words,
it behaves like the identity function on any type that is not a constant expression. It can hence be
used in any place where one wants to be sure that expressions are simplified using floating-point
computations to constants of a known precision, regardless of the type of actual language elements.

• ∼ error evaluates to error and provokes a warning.

• ∼ is a prefix operator not requiring parentheses. Its precedence is the same as for the unary + and
− operators. It cannot be repeatedly used without brackets.

Example 1:

> print(exp(5));

exp(5)

> print(~ exp(5));

1.48413159102576603421115580040552279623487667593878e2

Example 2:

> autosimplify = off!;

Example 3:

> print(~sin(5 * pi));

0

Example 4:

> print(~exp(x));

exp(x)

> print(~ "Hello");

Hello

Example 5:

> print(~exp(x*5*Pi));

exp((pi) * 5 * x)

> print(exp(x* ~(5*Pi)));

exp(x * 1.57079632679489661923132169163975144209858469968757e1)

45

Example 6:

> print(~exp(5)*x);

1.48413159102576603421115580040552279623487667593878e2 * x

> print((~exp(5))*x);

1.48413159102576603421115580040552279623487667593878e2 * x

> print(~(exp(5)*x));

exp(5) * x

See also: evaluate (8.51), prec (8.123), error (8.50)

8.9 asciiplot

Name: asciiplot
plots a function in a range using ASCII characters
Usage:

asciiplot(function, range) : (function, range) → void

Parameters:

• function represents a function to be plotted

• range represents a range the function is to be plotted in

Description:

• asciiplot plots the function function in range range using ASCII characters. On systems that
provide the necessary TIOCGWINSZ ioctl, Sollya determines the size of the terminal for the plot
size if connected to a terminal. If it is not connected to a terminal or if the test is not possible,
the plot is of fixed size 77× 25 characters. The function is evaluated on a number of points equal
to the number of columns available. Its value is rounded to the next integer in the range of lines
available. A letter x is written at this place. If zero is in the hull of the image domain of the
function, an x-axis is displayed. If zero is in range, a y-axis is displayed. If the function is constant
or if the range is reduced to one point, the function is evaluated to a constant and the constant is
displayed instead of a plot.

Example 1:

46

> asciiplot(exp(x),[1;2]);

x

xx

xxx

xx

xx

xxx

xx

xxx

xx

xxx

xxx

xxx

xxx

xxx

xxx

xxxx

xxxx

xxx

xxxx

xxxxx

xxxxx

xxxx

xxxxx

xxxx

Example 2:

> asciiplot(expm1(x),[-1;2]);

| x

| x

| x

| x

| x

| xx

| x

| x

| xx

| xx

| xx

| xx

| x

| xxx

| xx

| xxx

| xxx

| xxxx

| xxxx

| xxxx

| xxxxxx

---------------------xxxxxxxx---

xxxxxxxxxxxx |

xxxxxxxxx |

Example 3:

47

> asciiplot(5,[-1;1]);

5

Example 4:

> asciiplot(exp(x),[1;1]);

2.71828182845904523536028747135266249775724709369998

See also: plot (8.116), externalplot (8.57)

8.10 asin

Name: asin
the arcsine function.
Description:

• asin is the inverse of the function sin: asin(y) is the unique number x ∈ [−π/2;π/2] such that
sin(x)=y.

• It is defined only for y ∈ [−1; 1].

See also: sin (8.159)

8.11 asinh

Name: asinh
the arg-hyperbolic sine function.
Description:

• asinh is the inverse of the function sinh: asinh(y) is the unique number x ∈ [−∞; +∞] such that
sinh(x)=y.

• It is defined for every real number y.

See also: sinh (8.161)

8.12 atan

Name: atan
the arctangent function.
Description:

• atan is the inverse of the function tan: atan(y) is the unique number x ∈ [−π/2; +π/2] such that
tan(x)=y.

• It is defined for every real number y.

See also: tan (8.170)

8.13 atanh

Name: atanh
the hyperbolic arctangent function.
Description:

• atanh is the inverse of the function tanh: atanh(y) is the unique number x ∈ [−∞; +∞] such
that tanh(x)=y.

• It is defined only for y ∈ [−1; 1].

See also: tanh (8.171)

48

8.14 autodiff

Name: autodiff
Computes the first n derivatives of a function at a point or over an interval.
Usage:

autodiff(f, n, x0) : (function, integer, constant) → list
autodiff(f, n, I) : (function, integer, range) → list

Parameters:

• f is the function to be differentiated.

• n is the order of differentiation.

• x0 is the point at which the function is differentiated.

• I is the interval over which the function is differentiated.

Description:

• autodiff computes the first n derivatives of f at point x0. The computation is performed numer-
ically, without symbolically differentiating the expression of f . Yet, the computation is safe since
small interval enclosures are produced. More precisely, autodiff returns a list [f0, . . . , fn] such
that, for each i, fi is a small interval enclosing the exact value of f (i)(x0).

• Since it does not perform any symbolic differentiation, autodiff is much more efficient than diff
and should be prefered when only numerical values are necessary.

• If an interval I is provided instead of a point x0, the list returned by autodiff satisfies: ∀i, f (i)(I) ⊆
fi. A particular use is when one wants to know the successive derivatives of a function at a non
representable point such as π. In this case, it suffices to call autodiff with the (almost) point
interval I = [pi].

• When I is almost a point interval, the returned enclosures fi are also almost point intervals.
However, when the interval I begins to be fairly large, the enclosures can be deeply overestimated
due to the dependecy phenomenon present with interval arithmetic.

• As a particular case, f0 is an enclosure of the image of f over I. However, since the algorithm is
not specially designed for this purpose it is not very efficient for this particular task. In particular,
it is not able to return a finite enclosure for functions with removable singularities (e.g. sin(x)/x
at 0). The command evaluate is much more efficient for computing an accurate enclosure of the
image of a function over an interval.

Example 1:

> L = autodiff(exp(cos(x))+sin(exp(x)), 5, 0);

> midpointmode = on!;

> for f_i in L do f_i;

0.3559752813266941742012789792982961497379810154498~2/4~e1

0.5403023058681397174009366074429766037323104206179~0/3~

-0.3019450507398802024611853185539984893647499733880~6/2~e1

-0.252441295442368951995750696489089699886768918239~6/4~e1

0.31227898756481033145214529184139729746320579069~1/3~e1

-0.16634307959006696033484053579339956883955954978~3/1~e2

Example 2:

49

> f = log(cos(x)+x);

> L = autodiff(log(cos(x)+x), 5, [2,4]);

> L[0];

[0;1.27643852425465597132446653114905059102580436018893]

> evaluate(f, [2,4]);

[0.45986058925497069206106494332976097408234056912429;1.207872105899641695959010

37621103012113048821362855]

> fprime = diff(f);

> L[1];

[2.53086745013099407167484456656211083053393118778677e-2;1.756802495307928251372

63909451182909413591288733649]

> evaluate(fprime,[2,4]);

[2.71048755415961996452136364304380881763456815673085e-2;1.109195306639432908373

97225788623531405558431279949]

Example 3:

> L = autodiff(sin(x)/x, 0, [-1,1]);

> L[0];

[-@Inf@;@Inf@]

> evaluate(sin(x)/x, [-1,1]);

[0.5403023058681397174009366074429766037323104206179;1]

See also: diff (8.37), evaluate (8.51)

8.15 autosimplify

Name: autosimplify
activates, deactivates or inspects the value of the automatic simplification state variable
Usage:

autosimplify = activation value : on|off → void
autosimplify = activation value ! : on|off → void

autosimplify : on|off

Parameters:

• activation value represents on or off, i.e. activation or deactivation

Description:

• An assignment autosimplify = activation value, where activation value is one of on or off, acti-
vates respectively deactivates the automatic safe simplification of expressions of functions generated
by the evaluation of commands or in argument of other commands.

Sollya commands like remez, taylor or rationalapprox sometimes produce expressions that
can be simplified. Constant subexpressions can be evaluated to dyadic floating-point numbers,
monomials with coefficients 0 can be eliminated. Further, expressions indicated by the user perform
better in many commands when simplified before being passed in argument to a command. When
the automatic simplification of expressions is activated, Sollya automatically performs a safe (not
value changing) simplification process on such expressions.

The automatic generation of subexpressions can be annoying, in particular if it takes too much
time for not enough benefit. Further the user might want to inspect the structure of the expression
tree returned by a command. In this case, the automatic simplification should be deactivated.

If the assignment autosimplify = activation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

Example 1:

50

> autosimplify = on !;

> print(x - x);

0

> autosimplify = off ;

Automatic pure tree simplification has been deactivated.

> print(x - x);

x - x

Example 2:

> autosimplify = on !;

> print(rationalapprox(sin(pi/5.9),7));

0.5

> autosimplify = off !;

> print(rationalapprox(sin(pi/5.9),7));

1 / 2

See also: print (8.126), prec (8.123), points (8.118), diam (8.35), display (8.41), verbosity (8.181),
canonical (8.20), taylorrecursions (8.174), timing (8.177), fullparentheses (8.66), midpointmode
(8.100), hopitalrecursions (8.75), remez (8.143), rationalapprox (8.137), taylor (8.172)

8.16 bashevaluate

Name: bashevaluate
executes a shell command and returns its output as a string
Usage:

bashevaluate(command) : string → string
bashevaluate(command,input) : (string, string) → string

Parameters:

• command is a command to be interpreted by the shell.

• input is an optional character sequence to be fed to the command.

Description:

• bashevaluate(command) will execute the shell command command in a shell. All output on the
command’s standard output is collected and returned as a character sequence.

• If an additional argument input is given in a call to bashevaluate(command,input), this character
sequence is written to the standard input of the command command that gets executed.

• All characters output by command are included in the character sequence to which bashevaluate
evaluates but two exceptions. Every NULL character (‘\0’) in the output is replaced with ‘?’ as
Sollya is unable to handle character sequences containing that character. Additionally, if the
output ends in a newline character (‘\n’), this character is stripped off. Other newline characters
which are not at the end of the output are left as such.

Example 1:

> bashevaluate("LANG=C date");

Mon May 23 17:36:50 CEST 2011

Example 2:

> [| bashevaluate("echo Hello") |];

[|"Hello"|]

51

Example 3:

> a = bashevaluate("sed -e ’s/a/e/g;’", "Hallo");

> a;

Hello

See also: bashexecute (8.17)

8.17 bashexecute

Name: bashexecute
executes a shell command.
Usage:

bashexecute(command) : string → void

Parameters:

• command is a command to be interpreted by the shell.

Description:

• bashexecute(command) lets the shell interpret command. It is useful to execute some external
code within Sollya.

• bashexecute does not return anything. It just executes its argument. However, if command
produces an output in a file, this result can be imported in Sollya with help of commands like
execute, readfile and parse.

Example 1:

> bashexecute("LANG=C date");

Mon May 23 17:36:53 CEST 2011

See also: execute (8.52), readfile (8.140), parse (8.113), bashevaluate (8.16)

8.18 binary

Name: binary
special value for global state display
Description:

• binary is a special value used for the global state display. If the global state display is equal to
binary, all data will be output in binary notation.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.31), dyadic (8.46), powers (8.122), hexadecimal (8.73), display (8.41)

8.19 boolean

Name: boolean
keyword representing a boolean type
Usage:

boolean : type type

Description:

• boolean represents the boolean type for declarations of external procedures by means of exter-
nalproc.

Remark that in contrast to other indicators, type indicators like boolean cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.58), constant (8.25), function (8.67), integer (8.83), list of (8.91), range
(8.136), string (8.164)

52

8.20 canonical

Name: canonical
brings all polynomial subexpressions of an expression to canonical form or activates, deactivates or checks
canonical form printing
Usage:

canonical(function) : function → function
canonical = activation value : on|off → void

canonical = activation value ! : on|off → void

Parameters:

• function represents the expression to be rewritten in canonical form

• activation value represents on or off, i.e. activation or deactivation

Description:

• The command canonical rewrites the expression representing the function function in a way such
that all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written
in canonical form, i.e. as a sum of monomials in the canonical base. The canonical base is the
base of the integer powers of the global free variable. The command canonical does not endanger
the safety of computations even in Sollya’s floating-point environment: the function returned is
mathematically equal to the function function.

• An assignment canonical = activation value, where activation value is one of on or off, activates
respectively deactivates the automatic printing of polynomial expressions in canonical form, i.e. as
a sum of monomials in the canonical base. If automatic printing in canonical form is deactivated,
automatic printing yields to displaying polynomial subexpressions in Horner form.

If the assignment canonical = activation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

Example 1:

> print(canonical(1 + x * (x + 3 * x^2)));

1 + x^2 + 3 * x^3

> print(canonical((x + 1)^7));

1 + 7 * x + 21 * x^2 + 35 * x^3 + 35 * x^4 + 21 * x^5 + 7 * x^6 + x^7

Example 2:

> print(canonical(exp((x + 1)^5) - log(asin(((x + 2) + x)^4 * (x + 1)) + x)));

exp(1 + 5 * x + 10 * x^2 + 10 * x^3 + 5 * x^4 + x^5) - log(asin(16 + 80 * x + 16

0 * x^2 + 160 * x^3 + 80 * x^4 + 16 * x^5) + x)

Example 3:

53

> canonical;

off

> (x + 2)^9;

512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *

(144 + x * (18 + x))))))))

> canonical = on;

Canonical automatic printing output has been activated.

> (x + 2)^9;

512 + 2304 * x + 4608 * x^2 + 5376 * x^3 + 4032 * x^4 + 2016 * x^5 + 672 * x^6 +

144 * x^7 + 18 * x^8 + x^9

> canonical;

on

> canonical = off!;

> (x + 2)^9;

512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *

(144 + x * (18 + x))))))))

See also: horner (8.76), print (8.126), autosimplify (8.15)

8.21 ceil

Name: ceil
the usual function ceil.
Description:

• ceil is defined as usual: ceil(x) is the smallest integer y such that y ≥ x.

• It is defined for every real number x.

See also: floor (8.64), nearestint (8.104), round (8.149), RU (8.153)

8.22 checkinfnorm

Name: checkinfnorm
checks whether the infinity norm of a function is bounded by a value
Usage:

checkinfnorm(function,range,constant) : (function, range, constant) → boolean

Parameters:

• function represents the function whose infinity norm is to be checked

• range represents the infinity norm is to be considered on

• constant represents the upper bound the infinity norm is to be checked to

Description:

• The command checkinfnorm checks whether the infinity norm of the given function function in
the range range can be proven (by Sollya) to be less than the given bound bound. This means, if
checkinfnorm evaluates to true, the infinity norm has been proven (by Sollya’s interval arith-
metic) to be less than the bound. If checkinfnorm evaluates to false, there are two possibilities:
either the bound is less than or equal to the infinity norm of the function or the bound is greater
than the infinity norm but Sollya could not conclude using its internal interval arithmetic.

checkinfnorm is sensitive to the global variable diam. The smaller diam, the more time Sollya

will spend on the evaluation of checkinfnorm in order to prove the bound before returning false
although the infinity norm is bounded by the bound. If diam is equal to 0, Sollya will eventually
spend infinite time on instances where the given bound bound is less or equal to the infinity norm of
the function function in range range. In contrast, with diam being zero, checkinfnorm evaluates
to true iff the infinity norm of the function in the range is bounded by the given bound.

54

Example 1:

> checkinfnorm(sin(x),[0;1.75], 1);

true

> checkinfnorm(sin(x),[0;1.75], 1/2); checkinfnorm(sin(x),[0;20/39],1/2);

false

true

Example 2:

> p = remez(exp(x), 5, [-1;1]);

> b = dirtyinfnorm(p - exp(x), [-1;1]);

> checkinfnorm(p - exp(x), [-1;1], b);

false

> b1 = round(b, 15, RU);

> checkinfnorm(p - exp(x), [-1;1], b1);

true

> b2 = round(b, 25, RU);

> checkinfnorm(p - exp(x), [-1;1], b2);

false

> diam = 1b-20!;

> checkinfnorm(p - exp(x), [-1;1], b2);

true

See also: infnorm (8.82), dirtyinfnorm (8.39), supnorm (8.168), accurateinfnorm (8.3), remez
(8.143), diam (8.35)

8.23 coeff

Name: coeff
gives the coefficient of degree n of a polynomial
Usage:

coeff(f,n) : (function, integer) → constant

Parameters:

• f is a function (usually a polynomial).

• n is an integer

Description:

• If f is a polynomial, coeff(f, n) returns the coefficient of degree n in f.

• If f is a function that is not a polynomial, coeff(f, n) returns 0.

Example 1:

> coeff((1+x)^5,3);

10

Example 2:

> coeff(sin(x),0);

0

See also: degree (8.33), roundcoefficients (8.150), subpoly (8.165)

55

8.24 @

Name: @
concatenates two lists or strings or applies a list as arguments to a procedure
Usage:

L1@L2 : (list, list) → list
string1@string2 : (string, string) → string

proc@L1 : (procedure, list) → any type

Parameters:

• L1 and L2 are two lists.

• string1 and string2 are two strings.

• proc is a procedure.

Description:

• In its first usage form, @ concatenates two lists or strings.

• In its second usage form, @ applies the elements of a list as arguments to a procedure. In the
case when proc is a procedure with a fixed number of arguments, a check is done if the number of
elements in the list corresponds to the number of formal parameters of the procedure. An empty
list can therefore applied only to a procedure that does not take any argument. In the case of a
procedure with an arbitrary number of arguments, no such check is performed.

Example 1:

> [|1,...,3|]@[|7,8,9|];

[|1, 2, 3, 7, 8, 9|]

Example 2:

> "Hello "@"World!";

Hello World!

Example 3:

> procedure cool(a,b,c) {

write(a,", ", b," and ",c," are cool guys.\n");

};

> cool @ [| "Christoph", "Mioara", "Sylvain" |];

Christoph, Mioara and Sylvain are cool guys.

Example 4:

> procedure sayhello() {

"Hello! how are you?";

};

> sayhello();

Hello! how are you?

> sayhello @ [||];

Hello! how are you?

Example 5:

56

> procedure add(L = ...) {

var acc, i;

acc = 0;

for i in L do acc = i + acc;

return acc;

};

> add(1,2);

3

> add(1,2,3);

6

> add @ [|1, 2|];

3

> add @ [|1, 2, 3|];

6

> add @ [||];

0

See also: .: (8.125), :. (8.7), procedure (8.132), proc (8.131)

8.25 constant

Name: constant
keyword representing a constant type
Usage:

constant : type type

Description:

• constant represents the constant type for declarations of external procedures externalproc.

Remark that in contrast to other indicators, type indicators like constant cannot be handled
outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.58), boolean (8.19), function (8.67), integer (8.83), list of (8.91), range
(8.136), string (8.164)

8.26 cos

Name: cos
the cosine function.
Description:

• cos is the usual cosine function.

• It is defined for every real number x.

See also: acos (8.4), sin (8.159), tan (8.170)

8.27 cosh

Name: cosh
the hyperbolic cosine function.
Description:

• cosh is the usual hyperbolic function: cosh(x) = ex+e−x

2 .

• It is defined for every real number x.

See also: acosh (8.5), sinh (8.161), tanh (8.171), exp (8.53)

57

8.28 D

Name: D
short form for double
See also: double (8.43)

8.29 DD

Name: DD
short form for doubledouble
See also: doubledouble (8.44)

8.30 DE

Name: DE
short form for doubleextended
See also: doubleextended (8.45)

8.31 decimal

Name: decimal
special value for global state display
Description:

• decimal is a special value used for the global state display. If the global state display is equal
to decimal, all data will be output in decimal notation.

As any value it can be affected to a variable and stored in lists.

See also: dyadic (8.46), powers (8.122), hexadecimal (8.73), binary (8.18), display (8.41)

8.32 default

Name: default
default value for some commands.
Description:

• default is a special value and is replaced by something depending on the context where it is used.
It can often be used as a joker, when you want to specify one of the optional parameters of a
command and not the others: set the value of uninteresting parameters to default.

• Global variables can be reset by affecting them the special value default.

Example 1:

> p = remez(exp(x),5,[0;1],default,1e-5);

> q = remez(exp(x),5,[0;1],1,1e-5);

> p==q;

true

Example 2:

> prec;

165

> prec=200;

The precision has been set to 200 bits.

> prec=default;

The precision has been set to 165 bits.

58

8.33 degree

Name: degree
gives the degree of a polynomial.
Usage:

degree(f) : function → integer

Parameters:

• f is a function (usually a polynomial).

Description:

• If f is a polynomial, degree(f) returns the degree of f.

• Contrary to the usage, Sollya considers that the degree of the null polynomial is 0.

• If f is a function that is not a polynomial, degree(f) returns -1.

Example 1:

> degree((1+x)*(2+5*x^2));

3

> degree(0);

0

Example 2:

> degree(sin(x));

-1

See also: coeff (8.23), subpoly (8.165), roundcoefficients (8.150)

8.34 denominator

Name: denominator
gives the denominator of an expression
Usage:

denominator(expr) : function → function

Parameters:

• expr represents an expression

Description:

• If expr represents a fraction expr1 /expr2, denominator(expr) returns the denominator of this
fraction, i.e. expr2.

If expr represents something else, denominator(expr) returns 1.

Note that for all expressions expr, numerator(expr) / denominator(expr) is equal to expr.

Example 1:

> denominator(5/3);

3

Example 2:

> denominator(exp(x));

1

59

Example 3:

> a = 5/3;

> b = numerator(a)/denominator(a);

> print(a);

5 / 3

> print(b);

5 / 3

Example 4:

> a = exp(x/3);

> b = numerator(a)/denominator(a);

> print(a);

exp(x / 3)

> print(b);

exp(x / 3)

See also: numerator (8.109), rationalmode (8.138)

8.35 diam

Name: diam
parameter used in safe algorithms of Sollya and controlling the maximal length of the involved intervals.
Usage:

diam = width : constant → void
diam = width ! : constant → void

diam : constant

Parameters:

• width represents the maximal relative width of the intervals used

Description:

• diam is a global variable. Its value represents the maximal width allowed for intervals involved
in safe algorithms of Sollya (namely infnorm, checkinfnorm, accurateinfnorm, integral,
findzeros, supnorm).

• More precisely, diam is relative to the width of the input interval of the command. For instance,
suppose that diam=1e-5: if infnorm is called on interval [0, 1], the maximal width of an interval
will be 1e-5. But if it is called on interval [0, 1e−3], the maximal width will be 1e-8.

See also: infnorm (8.82), checkinfnorm (8.22), accurateinfnorm (8.3), integral (8.84), findzeros
(8.61), supnorm (8.168)

8.36 dieonerrormode

Name: dieonerrormode
global variable controlling if Sollya is exited on an error or not.
Usage:

dieonerrormode = activation value : on|off → void
dieonerrormode = activation value ! : on|off → void

dieonerrormode : on|off

Parameters:

• activation value controls if Sollya is exited on an error or not.

60

Description:

• dieonerrormode is a global variable. When its value is off, which is the default, Sollya will not
exit on any syntax, typing, side-effect errors. These errors will be caught by the tool, even if a
memory might be leaked at that point. On evaluation, the error special value will be produced.

• When the value of the dieonerrormode variable is on, Sollya will exit on any syntax, typing,
side-effect errors. A warning message will be printed in these cases at appropriate verbosity levels.

Example 1:

> verbosity = 1!;

> dieonerrormode = off;

Die-on-error mode has been deactivated.

> for i from true to false do i + "Salut";

Warning: one of the arguments of the for loop does not evaluate to a constant.

The for loop will not be executed.

> exp(17);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

2.41549527535752982147754351803858238798675673527224e7

Example 2:

> verbosity = 1!;

> dieonerrormode = off!;

> 5 */ 4;

Warning: syntax error, unexpected DIVTOKEN.

The last symbol read has been "/".

Will skip input until next semicolon after the unexpected token. May leak memory

.

exp(17);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

2.41549527535752982147754351803858238798675673527224e7

Example 3:

> verbosity = 1!;

> dieonerrormode;

off

> dieonerrormode = on!;

> dieonerrormode;

on

> for i from true to false do i + "Salut";

Warning: one of the arguments of the for loop does not evaluate to a constant.

The for loop will not be executed.

Warning: some syntax, typing or side-effect error has occurred.

As the die-on-error mode is activated, the tool will be exited.

Example 4:

61

> verbosity = 1!;

> dieonerrormode = on!;

> 5 */ 4;

Warning: syntax error, unexpected DIVTOKEN.

The last symbol read has been "/".

Will skip input until next semicolon after the unexpected token. May leak memory

.

Warning: some syntax, typing or side-effect error has occurred.

As the die-on-error mode is activated, the tool will be exited.

Example 5:

> verbosity = 0!;

> dieonerrormode = on!;

> 5 */ 4;

See also: on (8.111), off (8.110), verbosity (8.181), error (8.50)

8.37 diff

Name: diff
differentiation operator
Usage:

diff(function) : function → function

Parameters:

• function represents a function

Description:

• diff(function) returns the symbolic derivative of the function function by the global free variable.

If function represents a function symbol that is externally bound to some code by library, the
derivative is performed as a symbolic annotation to the returned expression tree.

Example 1:

> diff(sin(x));

cos(x)

Example 2:

> diff(x);

1

Example 3:

> diff(x^x);

x^x * (1 + log(x))

See also: library (8.89), autodiff (8.14), taylor (8.172), taylorform (8.173)

62

8.38 dirtyfindzeros

Name: dirtyfindzeros
gives a list of numerical values listing the zeros of a function on an interval.
Usage:

dirtyfindzeros(f,I) : (function, range) → list

Parameters:

• f is a function.

• I is an interval.

Description:

• dirtyfindzeros(f,I) returns a list containing some zeros of f in the interval I. The values in the
list are numerical approximation of the exact zeros. The precision of these approximations is
approximately the precision stored in prec. If f does not have two zeros very close to each other,
it can be expected that all zeros are listed. However, some zeros may be forgotten. This command
should be considered as a numerical algorithm and should not be used if safety is critical.

• More precisely, the algorithm relies on global variables prec and points and it performs the
following steps: let n be the value of variable points and t be the value of variable prec.

– Evaluate |f | at n evenly distributed points in the interval I. The working precision to be used
is automatically chosen in order to ensure that the sign is correct.

– Whenever f changes its sign for two consecutive points, find an approximation x of its zero
with precision t using Newton’s algorithm. The number of steps in Newton’s iteration depends
on t: the precision of the approximation is supposed to be doubled at each step.

– Add this value to the list.

Example 1:

> dirtyfindzeros(sin(x),[-5;5]);

[|-3.14159265358979323846264338327950288419716939937508, 0, 3.141592653589793238

46264338327950288419716939937508|]

Example 2:

> L1=dirtyfindzeros(x^2*sin(1/x),[0;1]);

> points=1000!;

> L2=dirtyfindzeros(x^2*sin(1/x),[0;1]);

> length(L1); length(L2);

18

25

See also: prec (8.123), points (8.118), findzeros (8.61), dirtyinfnorm (8.39), numberroots (8.108)

8.39 dirtyinfnorm

Name: dirtyinfnorm
computes a numerical approximation of the infinity norm of a function on an interval.
Usage:

dirtyinfnorm(f,I) : (function, range) → constant

Parameters:

• f is a function.

63

• I is an interval.

Description:

• dirtyinfnorm(f,I) computes an approximation of the infinity norm of the given function f on the
interval I, e.g. maxx∈I{|f(x)|}.

• The interval must be bound. If the interval contains one of -Inf or +Inf, the result of dirtyinfnorm
is NaN.

• The result of this command depends on the global variables prec and points. Therefore, the
returned result is generally a good approximation of the exact infinity norm, with precision prec.
However, the result is generally underestimated and should not be used when safety is critical. Use
infnorm instead.

• The following algorithm is used: let n be the value of variable points and t be the value of variable
prec.

– Evaluate |f | at n evenly distributed points in the interval I. The evaluation are faithful
roundings of the exact results at precision t.

– Whenever the derivative of f changes its sign for two consecutive points, find an approximation
x of its zero with precision t. Then compute a faithful rounding of |f(x)| at precision t.

– Return the maximum of all computed values.

Example 1:

> dirtyinfnorm(sin(x),[-10;10]);

1

Example 2:

> prec=15!;

> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);

1.45856

> prec=40!;

> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);

1.458528537135

> prec=100!;

> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);

1.458528537136237644438147455024

> prec=200!;

> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);

1.458528537136237644438147455023841718299214087993682374094153

Example 3:

> dirtyinfnorm(x^2, [log(0);log(1)]);

@NaN@

See also: prec (8.123), points (8.118), infnorm (8.82), checkinfnorm (8.22), supnorm (8.168)

8.40 dirtyintegral

Name: dirtyintegral
computes a numerical approximation of the integral of a function on an interval.
Usage:

dirtyintegral(f,I) : (function, range) → constant

64

Parameters:

• f is a function.

• I is an interval.

Description:

• dirtyintegral(f,I) computes an approximation of the integral of f on I.

• The interval must be bound. If the interval contains one of -Inf or +Inf, the result of dirtyintegral
is NaN, even if the integral has a meaning.

• The result of this command depends on the global variables prec and points. The method used
is the trapezium rule applied at n evenly distributed points in the interval, where n is the value of
global variable points.

• This command computes a numerical approximation of the exact value of the integral. It should
not be used if safety is critical. In this case, use command integral instead.

• Warning: this command is currently known to be unsatisfactory. If you really need to compute
integrals, think of using an other tool or report a feature request to sylvain.chevillard@ens-lyon.org.

Example 1:

> sin(10);

-0.54402111088936981340474766185137728168364301291621

> dirtyintegral(cos(x),[0;10]);

-0.54400304905152629822448058882475382036536298356281

> points=2000!;

> dirtyintegral(cos(x),[0;10]);

-0.54401997751158321972222697312583199035995837926892

See also: prec (8.123), points (8.118), integral (8.84)

8.41 display

Name: display
sets or inspects the global variable specifying number notation
Usage:

display = notation value : decimal|binary|dyadic|powers|hexadecimal → void
display = notation value ! : decimal|binary|dyadic|powers|hexadecimal → void

display : decimal|binary|dyadic|powers|hexadecimal

Parameters:

• notation value represents a variable of type decimal|binary|dyadic|powers|hexadecimal

Description:

• An assignment display = notation value, where notation value is one of decimal, dyadic, powers,
binary or hexadecimal, activates the corresponding notation for output of values in print, write
or at the Sollya prompt.

If the global notation variable display is decimal, all numbers will be output in scientific decimal
notation. If the global notation variable display is dyadic, all numbers will be output as dyadic
numbers with Gappa notation. If the global notation variable display is powers, all numbers will
be output as dyadic numbers with a notation compatible with Maple and PARI/GP. If the global
notation variable display is binary, all numbers will be output in binary notation. If the global
notation variable display is hexadecimal, all numbers will be output in C99/ IEEE754-2008

65

notation. All output notations can be parsed back by Sollya, inducing no error if the input and
output precisions are the same (see prec).

If the assignment display = notation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

Example 1:

> display = decimal;

Display mode is decimal numbers.

> a = evaluate(sin(pi * x), 0.25);

> a;

0.70710678118654752440084436210484903928483593768847

> display = binary;

Display mode is binary numbers.

> a;

1.011010100000100111100110011001111111001110111100110010010000100010110010111110

11000100110110011011101010100101010111110100111110001110101101111011000001011101

010001_2 * 2^(-1)

> display = hexadecimal;

Display mode is hexadecimal numbers.

> a;

0xb.504f333f9de6484597d89b3754abe9f1d6f60ba88p-4

> display = dyadic;

Display mode is dyadic numbers.

> a;

33070006991101558613323983488220944360067107133265b-165

> display = powers;

Display mode is dyadic numbers in integer-power-of-2 notation.

> a;

33070006991101558613323983488220944360067107133265 * 2^(-165)

See also: print (8.126), write (8.184), decimal (8.31), dyadic (8.46), powers (8.122), binary (8.18),
hexadecimal (8.73), prec (8.123)

8.42 /

Name: /
division function
Usage:

function1 / function2 : (function, function) → function
interval1 / interval2 : (range, range) → range

interval1 / constant : (range, constant) → range
interval1 / constant : (constant, range) → range

Parameters:

• function1 and function2 represent functions

• interval1 and interval2 represent intervals (ranges)

• constant represents a constant or constant expression

Description:

• / represents the division (function) on reals. The expression function1 / function2 stands for the
function composed of the division function and the two functions function1 and function2, where
function1 is the numerator and function2 the denominator.

66

• / can be used for interval arithmetic on intervals (ranges). / will evaluate to an interval that safely
encompasses all images of the division function with arguments varying in the given intervals. If
the intervals given contain points where the division function is not defined, infinities and NaNs will
be produced in the output interval. Any combination of intervals with intervals or constants (resp.
constant expressions) is supported. However, it is not possible to represent families of functions
using an interval as one argument and a function (varying in the free variable) as the other one.

Example 1:

> 5 / 2;

2.5

Example 2:

> x / 2;

x * 0.5

Example 3:

> x / x;

1

Example 4:

> 3 / 0;

@NaN@

Example 5:

> diff(sin(x) / exp(x));

(exp(x) * cos(x) - sin(x) * exp(x)) / exp(x)^2

Example 6:

> [1;2] / [3;4];

[0.25;0.6668]

> [1;2] / 17;

[5.8823529411764705882352941176470588235294117647058e-2;0.1176470588235294117647

0588235294117647058823529412]

> -13 / [4;17];

[-3.25;-0.76470588235294117647058823529411764705882352941175]

See also: + (8.117), − (8.102), ∗ (8.103), ˆ (8.121)

8.43 double

Names: double, D
rounding to the nearest IEEE 754 double (binary64).
Description:

• double is both a function and a constant.

• As a function, it rounds its argument to the nearest IEEE 754 double precision (i.e. IEEE754-2008
binary64) number. Subnormal numbers are supported as well as standard numbers: it is the real
rounding described in the standard.

• As a constant, it symbolizes the double precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands round, roundcoefficients and implementpoly. See
the corresponding help pages for examples.

67

Example 1:

> display=binary!;

> D(0.1);

1.100110011001100110011001100110011001100110011001101_2 * 2^(-4)

> D(4.17);

1.000010101110000101000111101011100001010001111010111_2 * 2^(2)

> D(1.011_2 * 2^(-1073));

1.1_2 * 2^(-1073)

See also: halfprecision (8.71), single (8.160), doubleextended (8.45), doubledouble (8.44), quad
(8.134), tripledouble (8.178), roundcoefficients (8.150), implementpoly (8.79), round (8.149),
printdouble (8.127)

8.44 doubledouble

Names: doubledouble, DD
represents a number as the sum of two IEEE doubles.
Description:

• doubledouble is both a function and a constant.

• As a function, it rounds its argument to the nearest number that can be written as the sum of two
double precision numbers.

• The algorithm used to compute doubledouble(x) is the following: let xh = double(x) and let xl
= double(x− xh). Return the number xh + xl. Note that if the current precision is not sufficient
to exactly represent xh + xl, a rounding will occur and the result of doubledouble(x) will be
useless.

• As a constant, it symbolizes the double-double precision format. It is used in contexts when a pre-
cision format is necessary, e.g. in the commands round, roundcoefficients and implementpoly.
See the corresponding help pages for examples.

Example 1:

> verbosity=1!;

> a = 1+ 2^(-100);

> DD(a);

1.0000000000000000000000000000007888609052210118054

> prec=50!;

> DD(a);

Warning: double rounding occurred on invoking the double-double rounding operato

r.

Try to increase the working precision.

1

See also: halfprecision (8.71), single (8.160), double (8.43), doubleextended (8.45), quad (8.134),
tripledouble (8.178), roundcoefficients (8.150), implementpoly (8.79), round (8.149)

8.45 doubleextended

Names: doubleextended, DE
computes the nearest number with 64 bits of mantissa.
Description:

• doubleextended is a function that computes the nearest floating-point number with 64 bits of
mantissa to a given number. Since it is a function, it can be composed with other Sollya functions
such as exp, sin, etc.

68

• doubleextended now does handle subnormal numbers for a presumed exponent width of the
double-extended format of 15 bits. This means, with respect to rounding, doubleextended be-
haves as a IEEE 754-2008 binary79 with a 64 bit significand (with a hidden bit normal range),
one sign bit and a 15 bit exponent field would behave. This behavior may be different from the
one observed on Intel-based IA32/Intel64 processors (or compatible versions from other vendors).
However it is the one seen on HP/Intel Itanium when the precision specifier is double-extended
and pseudo-denormals are activated.

• Since it is a function and not a command, its behavior is a bit different from the behavior of
round(x,64,RN) even if the result is exactly the same. round(x,64,RN) is immediately evaluated
whereas doubleextended(x) can be composed with other functions (and thus be plotted and so
on).

Example 1:

> display=binary!;

> DE(0.1);

1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)

> round(0.1,64,RN);

1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)

Example 2:

> D(2^(-2000));

0

> DE(2^(-20000));

0

Example 3:

> verbosity=1!;

> f = sin(DE(x));

> f(pi);

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

-5.0165576126683320235573270803307570138315616702549e-20

> g = sin(round(x,64,RN));

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

See also: roundcoefficients (8.150), halfprecision (8.71), single (8.160), double (8.43), doubledou-
ble (8.44), quad (8.134), tripledouble (8.178), round (8.149)

8.46 dyadic

Name: dyadic
special value for global state display
Description:

• dyadic is a special value used for the global state display. If the global state display is equal to
dyadic, all data will be output in dyadic notation with numbers displayed in Gappa format.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.31), powers (8.122), hexadecimal (8.73), binary (8.18), display (8.41)

69

8.47 ==

Name: ==
equality test operator
Usage:

expr1 == expr2 : (any type, any type) → boolean

Parameters:

• expr1 and expr2 represent expressions

Description:

• The operator == evaluates to true iff its operands expr1 and expr2 are syntactically equal and
different from error or constant expressions that are not constants and that evaluate to the same
floating-point number with the global precision prec. The user should be aware of the fact that
because of floating-point evaluation, the operator == is not exactly the same as the mathematical
equality. Further remark that according to IEEE 754-2008 floating-point rules, which Sollya

emulates, floating-point data which are NaN do not compare equal to any other floating-point
datum, including NaN.

Example 1:

> "Hello" == "Hello";

true

> "Hello" == "Salut";

false

> "Hello" == 5;

false

> 5 + x == 5 + x;

true

Example 2:

> 1 == exp(0);

true

> asin(1) * 2 == pi;

true

> exp(5) == log(4);

false

Example 3:

> sin(pi/6) == 1/2 * sqrt(3);

false

Example 4:

> prec = 12;

The precision has been set to 12 bits.

> 16384.1 == 16385.1;

true

Example 5:

> error == error;

false

Example 6:

70

> a = "Biba";

> b = NaN;

> a == a;

true

> b == b;

false

See also: != (8.105), > (8.69), >= (8.68), <= (8.87), < (8.96), in (8.80), ! (8.107), && (8.6), || (8.112),
error (8.50), prec (8.123)

8.48 erf

Name: erf
the error function.
Description:

• erf is the error function defined by:

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

• It is defined for every real number x.

See also: erfc (8.49), exp (8.53)

8.49 erfc

Name: erfc
the complementary error function.
Description:

• erfc is the complementary error function defined by erfc(x) = 1− erf(x).

• It is defined for every real number x.

See also: erf (8.48)

8.50 error

Name: error
expression representing an input that is wrongly typed or that cannot be executed
Usage:

error : error

Description:

• The variable error represents an input during the evaluation of which a type or execution error
has been detected or is to be detected. Inputs that are syntactically correct but wrongly typed
evaluate to error at some stage. Inputs that are correctly typed but containing commands that
depend on side-effects that cannot be performed or inputs that are wrongly typed at meta-level
(cf. parse), evaluate to error.

Remark that in contrast to all other elements of the Sollya language, error compares neither
equal nor unequal to itself. This provides a means of detecting syntax errors inside the Sollya

language itself without introducing issues of two different wrongly typed inputs being equal.

Example 1:

> print(5 + "foo");

error

71

Example 2:

> error;

error

Example 3:

> error == error;

false

> error != error;

false

Example 4:

> correct = 5 + 6;

> incorrect = 5 + "foo";

> correct == correct;

true

> incorrect == incorrect;

false

> errorhappened = !(incorrect == incorrect);

> errorhappened;

true

See also: void (8.182), parse (8.113), == (8.47), != (8.105)

8.51 evaluate

Name: evaluate
evaluates a function at a constant point or in a range
Usage:

evaluate(function, constant) : (function, constant) → constant | range
evaluate(function, range) : (function, range) → range

evaluate(function, function2) : (function, function) → function

Parameters:

• function represents a function

• constant represents a constant point

• range represents a range

• function2 represents a function that is not constant

Description:

• If its second argument is a constant constant, evaluate evaluates its first argument function at
the point indicated by constant. This evaluation is performed in a way that the result is a faithful
rounding of the real value of the function at constant to the current global precision. If such a
faithful rounding is not possible, evaluate returns a range surely encompassing the real value of
the function function at constant. If even interval evaluation is not possible because the expression
is undefined or numerically unstable, NaN will be produced.

• If its second argument is a range range, evaluate evaluates its first argument function by interval
evaluation on this range range. This ensures that the image domain of the function function on
the preimage domain range is surely enclosed in the returned range.

72

• In the case when the second argument is a range that is reduced to a single point (such that
[1; 1] for instance), the evaluation is performed in the same way as when the second argument is
a constant but it produces a range as a result: evaluate automatically adjusts the precision of
the intern computations and returns a range that contains at most three floating-point consecutive
numbers in precision prec. This correponds to the same accuracy as a faithful rounding of the
actual result. If such a faithful rounding is not possible, evaluate has the same behavior as in the
case when the second argument is a constant.

• If its second argument is a function function2 that is not a constant, evaluate replaces all occur-
rences of the free variable in function function by function function2.

Example 1:

> midpointmode=on!;

> print(evaluate(sin(pi * x), 2.25));

0.70710678118654752440084436210484903928483593768847

> print(evaluate(sin(pi * x), [2.25; 2.25]));

0.707106781186547524400844362104849039284835937688~4/5~

Example 2:

> print(evaluate(sin(pi * x), 2));

[-1.72986452514381269516508615031098129542836767991679e-12715;7.5941198201187963

145069564314525661706039084390067e-12716]

Example 3:

> print(evaluate(sin(pi * x), [2, 2.25]));

[-5.143390272677254630046998919961912407349224165421e-50;0.707106781186547524400

84436210484903928483593768866]

Example 4:

> print(evaluate(sin(pi * x), 2 + 0.25 * x));

sin((pi) * (2 + 0.25 * x))

Example 5:

> print(evaluate(sin(pi * 1/x), 0));

[@NaN@;@NaN@]

See also: isevaluable (8.86)

8.52 execute

Name: execute
executes the content of a file
Usage:

execute(filename) : string → void

Parameters:

• filename is a string representing a file name

Description:

• execute opens the file indicated by filename, and executes the sequence of commands it contains.
This command is evaluated at execution time: this way you can modify the file filename (for
instance using bashexecute) and execute it just after.

73

• If filename contains a command execute, it will be executed recursively.

• If filename contains a call to restart, it will be neglected.

• If filename contains a call to quit, the commands following quit in filename will be neglected.

Example 1:

> a=2;

> a;

2

> print("a=1;") > "example.sollya";

> execute("example.sollya");

> a;

1

Example 2:

> verbosity=1!;

> print("a=1; restart; a=2;") > "example.sollya";

> execute("example.sollya");

Warning: a restart command has been used in a file read into another.

This restart command will be neglected.

> a;

2

Example 3:

> verbosity=1!;

> print("a=1; quit; a=2;") > "example.sollya";

> execute("example.sollya");

Warning: the execution of a file read by execute demanded stopping the interpret

ation but it is not stopped.

> a;

1

See also: parse (8.113), readfile (8.140), write (8.184), print (8.126), bashexecute (8.17), quit
(8.135), restart (8.145)

8.53 exp

Name: exp
the exponential function.
Description:

• exp is the usual exponential function defined as the solution of the ordinary differential equation
y′ = y with y(0) = 1.

• exp(x) is defined for every real number x.

See also: exp (8.53), log (8.92)

8.54 expand

Name: expand
expands polynomial subexpressions
Usage:

expand(function) : function → function

74

Parameters:

• function represents a function

Description:

• expand(function) expands all polynomial subexpressions in function function as far as possible.
Factors of sums are multiplied out, power operators with constant positive integer exponents are
replaced by multiplications and divisions are multiplied out, i.e. denomiators are brought at the
most interior point of expressions.

Example 1:

> print(expand(x^3));

x * x * x

Example 2:

> print(expand((x + 2)^3 + 2 * x));

8 + 12 * x + 6 * x * x + x * x * x + 2 * x

Example 3:

> print(expand(exp((x + (x + 3))^5)));

exp(243 + 405 * x + 270 * x * x + 90 * x * x * x + 15 * x * x * x * x + x * x *

x * x * x + x * 405 + 108 * x * 5 * x + 54 * x * x * 5 * x + 12 * x * x * x * 5

* x + x * x * x * x * 5 * x + x * x * 270 + 27 * x * x * x * 10 + 9 * x * x * x

* x * 10 + x * x * x * x * x * 10 + x * x * x * 90 + 6 * x * x * x * x * 10 + x

* x * x * x * x * 10 + x * x * x * x * 5 * x + 15 * x * x * x * x + x * x * x *

x * x)

See also: simplify (8.157), simplifysafe (8.158), horner (8.76), coeff (8.23), degree (8.33)

8.55 expm1

Name: expm1
shifted exponential function.
Description:

• expm1 is defined by expm1(x) = exp(x)− 1.

• It is defined for every real number x.

See also: exp (8.53)

8.56 exponent

Name: exponent
returns the scaled binary exponent of a number.
Usage:

exponent(x) : constant → integer

Parameters:

• x is a dyadic number.

Description:

• exponent(x) is by definition 0 if x is one of 0, NaN, or Inf.

75

• If x is not zero, it can be uniquely written as x = m · 2e where m is an odd integer and e is an
integer. exponent(x) returns e.

Example 1:

> a=round(Pi,20,RN);

> e=exponent(a);

> e;

-17

> m=mantissa(a);

> a-m*2^e;

0

See also: mantissa (8.97), precision (8.124)

8.57 externalplot

Name: externalplot
plots the error of an external code with regard to a function
Usage:

externalplot(filename, mode, function, range, precision) : (string, absolute|relative, function, range,
integer) → void

externalplot(filename, mode, function, range, precision, perturb) : (string, absolute|relative, function,
range, integer, perturb) → void

externalplot(filename, mode, function, range, precision, plot mode, result filename) : (string,
absolute|relative, function, range, integer, file|postscript|postscriptfile, string) → void

externalplot(filename, mode, function, range, precision, perturb, plot mode, result filename) : (string,
absolute|relative, function, range, integer, perturb, file|postscript|postscriptfile, string) → void

Description:

• The command externalplot plots the error of an external function evaluation code sequence
implemented in the object file named filename with regard to the function function. If mode
evaluates to absolute, the difference of both functions is considered as an error function; if mode
evaluates to relative, the difference is divided by the function function. The resulting error function
is plotted on all floating-point numbers with precision significant mantissa bits in the range range.

If the sixth argument of the command externalplot is given and evaluates to perturb, each of
the floating-point numbers the function is evaluated at gets perturbed by a random value that is
uniformly distributed in ±1 ulp around the original precision bit floating-point variable.

If a sixth and seventh argument, respectively a seventh and eighth argument in the presence of
perturb as a sixth argument, are given that evaluate to a variable of type file|postscript|postscriptfile
respectively to a character sequence of type string, externalplot will plot (additionally) to a file
in the same way as the command plot does. See plot for details.

The external function evaluation code given in the object file name filename is supposed to define
a function name f as follows (here in C syntax): void f(mpfr t rop, mpfr op). This function
is supposed to evaluate op with an accuracy corresponding to the precision of rop and assign this
value to rop.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");

> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l

mpfr");

> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: plot (8.116), asciiplot (8.9), perturb (8.114), absolute (8.2), relative (8.142), file (8.60),
postscript (8.119), postscriptfile (8.120), bashexecute (8.17), externalproc (8.58), library (8.89)

76

8.58 externalproc

Name: externalproc
binds an external code to a Sollya procedure
Usage:

externalproc(identifier, filename, argumenttype − > resulttype) : (identifier type, string, type type,
type type) → void

Parameters:

• identifier represents the identifier the code is to be bound to

• filename of type string represents the name of the object file where the code of procedure can be
found

• argumenttype represents a definition of the types of the arguments of the Sollya procedure and
the external code

• resulttype represents a definition of the result type of the external code

Description:

• externalproc allows for binding the Sollya identifier identifier to an external code. After this
binding, when Sollya encounters identifier applied to a list of actual parameters, it will evaluate
these parameters and call the external code with these parameters. If the external code indicated
success, it will receive the result produced by the external code, transform it to Sollya’s internal
representation and return it.

In order to allow correct evaluation and typing of the data in parameter and in result to be
passed to and received from the external code, externalproc has a third parameter argumenttype
− > resulttype. Both argumenttype and resulttype are one of void, constant, function, range,
integer, string, boolean, list of constant, list of function, list of range, list of integer,
list of string, list of boolean.

If upon a usage of a procedure bound to an external procedure the type of the actual parameters
given or its number is not correct, Sollya produces a type error. An external function not applied
to arguments represents itself and prints out with its argument and result types.

The external function is supposed to return an integer indicating success. It returns its result
depending on its Sollya result type as follows. Here, the external procedure is assumed to be
implemented as a C function.

If the Sollya result type is void, the C function has no pointer argument for the result. If the
Sollya result type is constant, the first argument of the C function is of C type mpfr t *, the
result is returned by affecting the MPFR variable. If the Sollya result type is function, the first
argument of the C function is of C type node **, the result is returned by the node * pointed
with a new node *. If the Sollya result type is range, the first argument of the C function is of
C type sollya mpfi t *, the result is returned by affecting the interval-arithmetic variable. If the
Sollya result type is integer, the first argument of the C function is of C type int *, the result is
returned by affecting the int variable. If the Sollya result type is string, the first argument of the
C function is of C type char **, the result is returned by the char * pointed with a new char *.
If the Sollya result type is boolean, the first argument of the C function is of C type int *, the
result is returned by affecting the int variable with a boolean value. If the Sollya result type is
list of type, the first argument of the C function is of C type chain **, the result is returned by
the chain * pointed with a new chain *. This chain contains for Sollya type constant pointers
mpfr t * to new MPFR variables, for Sollya type function pointers node * to new nodes, for
Sollya type range pointers sollya mpfi t * to new interval-arithmetic variables, for Sollya type
integer pointers int * to new int variables for Sollya type string pointers char * to new char

* variables and for Sollya type boolean pointers int * to new int variables representing boolean
values.

77

The external procedure affects its possible pointer argument if and only if it succeeds. This means, if
the function returns an integer indicating failure, it does not leak any memory to the encompassing
environment.

The external procedure receives its arguments as follows: If the Sollya argument type is void, no
argument array is given. Otherwise the C function receives a C void ** argument representing an
array of size equal to the arity of the function where each entry (of C type void *) represents a
value with a C type depending on the corresponding Sollya type. If the Sollya type is constant,
the C type the void * is to be casted to is mpfr t *. If the Sollya type is function, the C type
the void * is to be casted to is node *. If the Sollya type is range, the C type the void * is to
be casted to is sollya mpfi t *. If the Sollya type is integer, the C type the void * is to be
casted to is int *. If the Sollya type is string, the C type the void * is to be casted to is char

*. If the Sollya type is boolean, the C type the void * is to be casted to is int *. If the Sollya

type is list of type, the C type the void * is to be casted to is chain *. Here depending on type,
the values in the chain are to be casted to mpfr t * for Sollya type constant, node * for Sollya
type function, sollya mpfi t * for Sollya type range, int * for Sollya type integer, char *

for Sollya type string and int * for Sollya type boolean.

The external procedure is not supposed to alter the memory pointed by its array argument void

**.

In both directions (argument and result values), empty lists are represented by chain * NULL

pointers.

In contrast to internal procedures, externally bounded procedures can be considered to be objects
inside Sollya that can be assigned to other variables, stored in list etc.

Example 1:

> bashexecute("gcc -fPIC -Wall -c externalprocexample.c");

> bashexecute("gcc -fPIC -shared -o externalprocexample externalprocexample.o");

> externalproc(foo, "./externalprocexample", (integer, integer) -> integer);

> foo;

foo(integer, integer) -> integer

> foo(5, 6);

11

> verbosity = 1!;

> foo();

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

> a = foo;

> a(5,6);

11

See also: library (8.89), libraryconstant (8.90), externalplot (8.57), bashexecute (8.17), void
(8.182), constant (8.25), function (8.67), range (8.136), integer (8.83), string (8.164), boolean
(8.19), list of (8.91)

8.59 false

Name: false
the boolean value representing the false.
Description:

• false is the usual boolean value.

Example 1:

78

> true && false;

false

> 2<1;

false

See also: true (8.179), && (8.6), || (8.112)

8.60 file

Name: file
special value for commands plot and externalplot
Description:

• file is a special value used in commands plot and externalplot to save the result of the command
in a data file.

• As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=file;

> name="plotSinCos";

> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.57), plot (8.116), postscript (8.119), postscriptfile (8.120)

8.61 findzeros

Name: findzeros
gives a list of intervals containing all zeros of a function on an interval.
Usage:

findzeros(f,I) : (function, range) → list

Parameters:

• f is a function.

• I is an interval.

Description:

• findzeros(f,I) returns a list of intervals I1, . . . , In such that, for every zero z of f , there exists
some k such that z ∈ Ik.

• The list may contain intervals Ik that do not contain any zero of f. An interval Ik may contain
many zeros of f.

• This command is meant for cases when safety is critical. If you want to be sure not to forget
any zero, use findzeros. However, if you just want to know numerical values for the zeros of f,
dirtyfindzeros should be quite satisfactory and a lot faster.

• If δ denotes the value of global variable diam, the algorithm ensures that for each k, |Ik| ≤ δ · |I|.

• The algorithm used is basically a bisection algorithm. It is the same algorithm that the one used
for infnorm. See the help page of this command for more details. In short, the behavior of the
algorithm depends on global variables prec, diam, taylorrecursions and hopitalrecursions.

Example 1:

79

> findzeros(sin(x),[-5;5]);

[|[-3.14208984375;-3.140869140625], [-1.220703125e-3;1.220703125e-3], [3.1408691

40625;3.14208984375]|]

> diam=1e-10!;

> findzeros(sin(x),[-5;5]);

[|[-3.14159265370108187198638916015625;-3.141592652536928653717041015625], [-1.1

6415321826934814453125e-9;1.16415321826934814453125e-9], [3.14159265253692865371

7041015625;3.14159265370108187198638916015625]|]

See also: dirtyfindzeros (8.38), infnorm (8.82), prec (8.123), diam (8.35), taylorrecursions (8.174),
hopitalrecursions (8.75), numberroots (8.108)

8.62 fixed

Name: fixed
indicates that fixed-point formats should be used for fpminimax
Usage:

fixed : fixed|floating

Description:

• The use of fixed in the command fpminimax indicates that the list of formats given as argument
is to be considered to be a list of fixed-point formats. See fpminimax for details.

Example 1:

> fpminimax(cos(x),6,[|32,32,32,32,32,32,32|],[-1;1],fixed);

0.9999997480772435665130615234375 + x^2 * (-0.4999928693287074565887451171875 +

x^2 * (4.163351492024958133697509765625e-2 + x^2 * (-1.3382239267230033874511718

75e-3)))

See also: fpminimax (8.65), floating (8.63)

8.63 floating

Name: floating
indicates that floating-point formats should be used for fpminimax
Usage:

floating : fixed|floating

Description:

• The use of floating in the command fpminimax indicates that the list of formats given as argu-
ment is to be considered to be a list of floating-point formats. See fpminimax for details.

Example 1:

> fpminimax(cos(x),6,[|D...|],[-1;1],floating);

0.99999974816012948686250183527590706944465637207031 + x * (5.521004406122249513

1782035802443168321913900126185e-14 + x * (-0.4999928698019768802396356477402150

630950927734375 + x * (-3.95371609372064761555136192612768146546591008227978e-13

+ x * (4.16335155285858099505347240665287245064973831176758e-2 + x * (5.2492670

395835122748014980938834327670386437070249e-13 + x * (-1.33822408807599468535953

768366653093835338950157166e-3))))))

See also: fpminimax (8.65), fixed (8.62)

80

8.64 floor

Name: floor
the usual function floor.
Description:

• floor is defined as usual: floor(x) is the greatest integer y such that y ≤ x.

• It is defined for every real number x.

See also: ceil (8.21), nearestint (8.104), round (8.149), RD (8.139)

8.65 fpminimax

Name: fpminimax
computes a good polynomial approximation with fixed-point or floating-point coefficients
Usage:

fpminimax(f, n, formats, range, indic1, indic2, indic3, P) : (function, integer, list, range,
absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |

fixed|floating | function, function) → function
fpminimax(f, monomials, formats, range, indic1, indic2, indic3, P) : (function, list, list, range,

absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |
fixed|floating | function, function) → function

fpminimax(f, n, formats, L, indic1, indic2, indic3, P) : (function, integer, list, list, absolute|relative |
fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating |

function, function) → function
fpminimax(f, monomials, formats, L, indic1, indic2, indic3, P) : (function, list, list, list,

absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |
fixed|floating | function, function) → function

Parameters:

• f is the function to be approximated

• n is the degree of the polynomial that must approximate f

• monomials is the list of monomials that must be used to represent the polynomial that approxi-
mates f

• formats is a list indicating the formats that the coefficients of the polynomial must have

• range is the interval where the function must be approximated

• L is a list of interpolation points used by the method

• indic1 (optional) is one of the optional indication parameters. See the detailed description below.

• indic2 (optional) is one of the optional indication parameters. See the detailed description below.

• indic3 (optional) is one of the optional indication parameters. See the detailed description below.

• P (optional) is the minimax polynomial to be considered for solving the problem.

Description:

• fpminimax uses a heuristic (but practically efficient) method to find a good polynomial approxi-
mation of a function f on an interval range. It implements the method published in the article:
Efficient polynomial L∞-approximations
Nicolas Brisebarre and Sylvain Chevillard
Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH 18)
pp. 169-176

81

• The basic usage of this command is fpminimax(f, n, formats, range). It computes a polynomial
approximation of f with degree at most n on the interval range. formats is a list of integers or
format types (such as double, doubledouble, etc.). The polynomial returned by the command
has its coefficients that fit the formats indications. For instance, if formats[0] is 35, the coefficient
of degree 0 of the polynomial will fit a floating-point format of 35 bits. If formats[1] is D, the
coefficient of degree 1 will be representable by a floating-point number with a precision of 53 bits
(which is not necessarily an IEEE 754 double precision number. See the remark below), etc.

• The second argument may be either an integer or a list of integers interpreted as the list of desired
monomials. For instance, the list [|0, 2, 4, 6|] indicates that the polynomial must be even and of
degree at most 6. Giving an integer n as second argument is equivalent as giving [|0, . . . , n|].
The list of formats is interpreted with respect to the list of monomials. For instance, if the list of
monomials is [|0, 2, 4, 6|] and the list of formats is [|161, 107, 53, 24|], the coefficients of degree 0
is searched as a floating-point number with precision 161, the coefficient of degree 2 is searched as
a number of precision 107, and so on.

• The list of formats may contain either integers or format types (halfprecision, single, double,
doubledouble, tripledouble, doubleextended and quad). The list may be too large or even
infinite. Only the first indications will be considered. For instance, for a degree n polynomial,
formats[n + 1] and above will be discarded. This lets one use elliptical indications for the last
coefficients.

• The floating-point coefficients considered by fpminimax do not have an exponent range. In
particular, in the format list, double is an exact synonym for 53. Currently, fpminimax only
ensures that the corresponding coefficient has at most 53 bits of mantissa. It does not imply that
it is an IEEE-754 double.

• By default, the list of formats is interpreted as a list of floating-point formats. This may be changed
by passing fixed as an optional argument (see below). Let us take an example: fpminimax(f, 2,
[107, DD, 53], [0;1]). Here the optional argument is missing (we could have set it to floating).
Thus, fpminimax will search for a polynomial of degree 2 with a constant coefficient that is a 107
bits floating-point number, etc.
Currently, doubledouble is just a synonym for 107 and tripledouble a synonym for 161. This
behavior may change in the future (taking into account the fact that some double-doubles are not
representable with 107 bits).
Second example: fpminimax(f, 2, [25, 18, 30], [0;1], fixed). In this case, fpminimax will search
for a polynomial of degree 2 with a constant coefficient of the form m/225 where m is an integer. In
other words, it is a fixed-point number with 25 bits after the point. Note that even with argument
fixed, the formats list is allowed to contain halfprecision, single, double, doubleextended,
doubledouble, quad or tripledouble. In this this case, it is just a synonym for 11, 24, 53, 64,
107, 113 or 161. This is deprecated and may change in the future.

• The fourth argument may be a range or a list. Lists are for advanced users that know what they
are doing. The core of the method is a kind of approximated interpolation. The list given here is a
list of points that must be considered for the interpolation. It must contain at least as many points
as unknown coefficients. If you give a list, it is also recommended that you provide the minimax
polynomial as last argument. If you give a range, the list of points will be automatically computed.

• The fifth, sixth and seventh arguments are optional. By default, fpminimax will approximate f
while optimizing the relative error, and interpreting the list of formats as a list of floating-point
formats.
This default behavior may be changed with these optional arguments. You may provide zero,
one, two or three of the arguments in any order. This lets the user indicate only the non-default
arguments.
The three possible arguments are:

– relative or absolute: the error to be optimized;

– floating or fixed: formats of the coefficients;

82

– a constrained part q.

The constrained part lets the user assign in advance some of the coefficients. For instance, for
approximating exp(x), it may be interesting to search for a polynomial p of the form

p = 1 + x+
x2

2
+ a3x

3 + a4x
4.

Thus, there is a constrained part q = 1+x+x2/2 and the unknown polynomial should be considered
in the monomial basis [|3, 4|]. Calling fpminimax with monomial basis [|3, 4|] and constrained
part q, will return a polynomial with the right form.

• The last argument is for advanced users. It is the minimax polynomial that approximates the
function f in the monomial basis. If it is not given this polynomial will be automatically computed
by fpminimax.
This minimax polynomial is used to compute the list of interpolation points required by the method.
In general, you do not have to provide this argument. But if you want to obtain several polynomials
of the same degree that approximate the same function on the same range, just changing the
formats, you should probably consider computing only once the minimax polynomial and the list
of points instead of letting fpminimax recompute them each time.
Note that in the case when a constrained part is given, the minimax polynomial must take that into
account. For instance, in the previous example, the minimax would be obtained by the following
command:

P = remez(1-(1+x+x^2/2)/exp(x), [|3,4|], range, 1/exp(x));

Note that the constrained part is not to be added to P .

• Note that fpminimax internally computes a minimax polynomial (using the same algorithm as
remez command). Thus fpminimax may encounter the same problems as remez. In particular,
it may be very slow when Haar condition is not fulfilled. Another consequence is that currently
fpminimax has to be run with a sufficiently high working precision.

Example 1:

> P = fpminimax(cos(x),6,[|DD, DD, D...|],[-1b-5;1b-5]);

> printexpansion(P);

(0x3ff0000000000000 + 0xbc09fda20235c100) + x * ((0x3b29ecd485d34781 + 0xb7c1cbc

97120359a) + x * (0xbfdfffffffffff98 + x * (0xbbfa6e0b3183cb0d + x * (0x3fa55555

55145337 + x * (0x3ca3540480618939 + x * 0xbf56c138142d8c3b)))))

Example 2:

> P = fpminimax(sin(x),6,[|32...|],[-1b-5;1b-5], fixed, absolute);

> display = powers!;

> P;

x * (1 + x^2 * (-357913941 * 2^(-31) + x^2 * (35789873 * 2^(-32))))

Example 3:

> P = fpminimax(exp(x), [|3,4|], [|D,24|], [-1/256; 1/246], 1+x+x^2/2);

> display = powers!;

> P;

1 + x * (1 + x * (1 * 2^(-1) + x * (375300225001191 * 2^(-51) + x * (5592621 * 2

^(-27)))))

Example 4:

83

> f = cos(exp(x));

> pstar = remez(f, 5, [-1b-7;1b-7]);

> listpoints = dirtyfindzeros(f-pstar, [-1b-7; 1b-7]);

> P1 = fpminimax(f, 5, [|DD...|], listpoints, absolute, default, default, pstar)

;

> P2 = fpminimax(f, 5, [|D...|], listpoints, absolute, default, default, pstar);

> P3 = fpminimax(f, 5, [|D, D, D, 24...|], listpoints, absolute, default, defaul

t, pstar);

> print("Error of pstar: ", dirtyinfnorm(f-pstar, [-1b-7; 1b-7]));

Error of pstar: 7.9048441305459735102879831325718745399379329453102e-16

> print("Error of P1: ", dirtyinfnorm(f-P1, [-1b-7; 1b-7]));

Error of P1: 7.9048441305459735159848647089192667442047469404883e-16

> print("Error of P2: ", dirtyinfnorm(f-P2, [-1b-7; 1b-7]));

Error of P2: 8.2477144579950871061147021597406077993657714575238e-16

> print("Error of P3: ", dirtyinfnorm(f-P3, [-1b-7; 1b-7]));

Error of P3: 1.08454277156993282593701156841863009789063333951055e-15

See also: remez (8.143), dirtyfindzeros (8.38), absolute (8.2), relative (8.142), fixed (8.62), floating
(8.63), default (8.32), halfprecision (8.71), single (8.160), double (8.43), doubleextended (8.45),
doubledouble (8.44), quad (8.134), tripledouble (8.178), implementpoly (8.79), coeff (8.23), de-
gree (8.33), roundcoefficients (8.150), guessdegree (8.70)

8.66 fullparentheses

Name: fullparentheses
activates, deactivates or inspects the state variable controlling output with full parenthesising
Usage:

fullparentheses = activation value : on|off → void
fullparentheses = activation value ! : on|off → void

Parameters:

• activation value represents on or off, i.e. activation or deactivation

Description:

• An assignment fullparentheses = activation value, where activation value is one of on or off,
activates respectively deactivates the output of expressions with full parenthesising. In full paren-
thesising mode, Sollya commands like print, write and the implicit command when an expression
is given at the prompt will output expressions with parenthesising at all places where it is neces-
sary for expressions containing infix operators to be parsed back with the same result. Otherwise
parentheses around associative operators are omitted.

If the assignment fullparentheses = activation value is followed by an exclamation mark, no
message indicating the new state is displayed. Otherwise the user is informed of the new state of
the global mode by an indication.

Example 1:

> autosimplify = off!;

> fullparentheses = off;

Full parentheses mode has been deactivated.

> print(1 + 2 + 3);

1 + 2 + 3

> fullparentheses = on;

Full parentheses mode has been activated.

> print(1 + 2 + 3);

(1 + 2) + 3

See also: print (8.126), write (8.184), autosimplify (8.15)

84

8.67 function

Name: function
keyword for declaring a procedure-based function or a keyword representing a function type
Usage:

function(procedure) : procedure → function
function : type type

Parameters:

• procedure is a procedure of type (range, integer, integer) → range

Description:

• For the sake of safety and mathematical consistency, Sollya distinguishes clearly between functions,
seen in the mathematical sense of the term, i.e. mappings, and procedures, seen in the sense
Computer Science gives to functions, i.e. pieces of code that compute results for arguments following
an algorithm. In some cases however, it is interesting to use such Computer Science procedures as
realisations of mathematical functions, e.g. in order to plot them or even to perform polynomial
approximation on them. The function keyword allows for such a transformation of a Sollya

procedure into a Sollya function.

• The procedure to be used as a function through function(procedure) must be of type (range, integer,
integer) → range. This means it must take in argument an interval X, a degree of differentiation n
and a working precision p. It must return in result an interval Y encompassing the image f (n)(X)
of the n-th derivative of the implemented function f , i.e. f (n)(X) ⊆ Y . In order to allow Sollya’s
algorithms to work properly, the procedure must ensure that, whenever (p,diam(X)) tends to
(+∞, 0), the computed over-estimated bounding Y tends to the actual image f (n)(X).

• The user must be aware that they are responsible of the correctness of the procedure. If, for
some n and X, procedure returns an interval Y such that f (n)(X) 6⊆ Y , function will successfully
return a function without any complain, but this function might behave inconsistently in further
computations.

• For cases when the procedure does not have the correct signature or does not return a finite interval
as a result function(procedure) evaluates to Not-A-Number (resp. to an interval of Not-A-Numbers
for interval evaluation).

• function also represents the function type for declarations of external procedures by means of
externalproc.

Remark that in contrast to other indicators, type indicators like function cannot be handled
outside the externalproc context. In particular, they cannot be assigned to variables.

Example 1:

85

> procedure EXP(X,n,p) {

var res, oldPrec;

oldPrec = prec;

prec = p!;

res = exp(X);

prec = oldPrec!;

return res;

};

> f = function(EXP);

> f(1);

2.71828182845904523536028747135266249775724709369998

> exp(1);

2.71828182845904523536028747135266249775724709369998

> f(x + 3);

(function(proc(X, n, p)

{

var res, oldPrec;

oldPrec = prec;

prec = p!;

res = exp(X);

prec = oldPrec!;

return res;

}))(3 + x)

> diff(f);

diff(function(proc(X, n, p)

{

var res, oldPrec;

oldPrec = prec;

prec = p!;

res = exp(X);

prec = oldPrec!;

return res;

}))

> (diff(f))(0);

1

> g = f(sin(x));

> g(17);

0.382358169993866834026905546416556413595734583420876

> diff(g);

(diff(function(proc(X, n, p)

{

var res, oldPrec;

oldPrec = prec;

prec = p!;

res = exp(X);

prec = oldPrec!;

return res;

})))(sin(x)) * cos(x)

> (diff(g))(1);

1.25338076749344683697237458088447611474812675164344

> p = remez(f,3,[-1/2;1/2]);

> p;

0.9996712090142519365811043588840936667986880903378 + x * (0.9997370298357005328

0233869785694438940067223265505 + x * (0.510497293602565555358002020522814444513

04355667385 + x * 0.1698143246071767617700502198641549152447429302716))

86

See also: proc (8.131), library (8.89), procedure (8.132), externalproc (8.58), boolean (8.19),
constant (8.25), integer (8.83), list of (8.91), range (8.136), string (8.164)

8.68 >=

Name: >=
greater-than-or-equal-to operator
Usage:

expr1 >= expr2 : (constant, constant) → boolean

Parameters:

• expr1 and expr2 represent constant expressions

Description:

• The operator >= evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers a1 respectively a2 with the global precision prec and a1 is greater than or equal to a2.
The user should be aware of the fact that because of floating-point evaluation, the operator >= is
not exactly the same as the mathematical operation greater-than-or-equal-to.

Example 1:

> 5 >= 4;

true

> 5 >= 5;

true

> 5 >= 6;

false

> exp(2) >= exp(1);

true

> log(1) >= exp(2);

false

Example 2:

> prec = 12;

The precision has been set to 12 bits.

> 16384.1 >= 16385.1;

true

See also: == (8.47), != (8.105), > (8.69), <= (8.87), < (8.96), in (8.80), ! (8.107), && (8.6), || (8.112),
prec (8.123), max (8.98), min (8.101)

8.69 >

Name: >
greater-than operator
Usage:

expr1 > expr2 : (constant, constant) → boolean

Parameters:

• expr1 and expr2 represent constant expressions

Description:

87

• The operator > evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers a1 respectively a2 with the global precision prec and a1 is greater than a2. The user
should be aware of the fact that because of floating-point evaluation, the operator > is not exactly
the same as the mathematical operation greater-than.

Example 1:

> 5 > 4;

true

> 5 > 5;

false

> 5 > 6;

false

> exp(2) > exp(1);

true

> log(1) > exp(2);

false

Example 2:

> prec = 12;

The precision has been set to 12 bits.

> 16385.1 > 16384.1;

false

See also: == (8.47), != (8.105), >= (8.68), <= (8.87), < (8.96), in (8.80), ! (8.107), && (8.6), || (8.112),
prec (8.123), max (8.98), min (8.101)

8.70 guessdegree

Name: guessdegree
returns the minimal degree needed for a polynomial to approximate a function with a certain error on
an interval.
Usage:

guessdegree(f,I,eps,w,bound) : (function, range, constant, function, constant) → range

Parameters:

• f is the function to be approximated.

• I is the interval where the function must be approximated.

• eps is the maximal acceptable error.

• w (optional) is a weight function. Default is 1.

• bound (optional) is a bound on the degree. Default is currently 128.

Description:

• guessdegree tries to find the minimal degree needed to approximate f on I by a polynomial with
an error ε = pw − f whose infinity norm not greater than eps. More precisely, it finds n minimal
such that there exists a polynomial p of degree n such that ‖pw − f‖∞ < eps.

• guessdegree returns an interval: for common cases, this interval is reduced to a single number (i.e.
the minimal degree). But in certain cases, guessdegree does not succeed in finding the minimal
degree. In such cases the returned interval is of the form [n, p] such that:

– no polynomial of degree n− 1 gives an error less than eps.

88

– there exists a polynomial of degree p giving an error less than eps.

• The fifth optional argument bound is used to prevent guessdegree from trying to find too large
degrees. If guessdegree does not manage to find a degree n satisfying the error and such that
n ≤ bound, an interval of the form [·, +∞] is returned. Note that bound must be a positive integer.

Example 1:

> guessdegree(exp(x),[-1;1],1e-10);

[10;10]

Example 2:

> guessdegree(exp(x),[-1;1],1e-10,default, 9);

[10;@Inf@]

Example 3:

> guessdegree(1, [-1;1], 1e-8, 1/exp(x));

[8;9]

See also: dirtyinfnorm (8.39), remez (8.143), fpminimax (8.65), degree (8.33)

8.71 halfprecision

Names: halfprecision, HP
rounding to the nearest IEEE 754 half-precision number (binary16).
Description:

• halfprecision is both a function and a constant.

• As a function, it rounds its argument to the nearest IEEE 754 half-precision (i.e. IEEE754-2008
binary16) number. Subnormal numbers are supported as well as standard numbers: it is the real
rounding described in the standard.

• As a constant, it symbolizes the half-precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands round and roundcoefficients. It is not supported for
implementpoly. See the corresponding help pages for examples.

Example 1:

> display=binary!;

> HP(0.1);

1.100110011_2 * 2^(-4)

> HP(4.17);

1.00001011_2 * 2^(2)

> HP(1.011_2 * 2^(-23));

1.1_2 * 2^(-23)

See also: single (8.160), double (8.43), doubleextended (8.45), doubledouble (8.44), quad (8.134),
tripledouble (8.178), roundcoefficients (8.150), fpminimax (8.65), implementpoly (8.79), round
(8.149), printsingle (8.129)

8.72 head

Name: head
gives the first element of a list.
Usage:

head(L) : list → any type

89

Parameters:

• L is a list.

Description:

• head(L) returns the first element of the list L. It is equivalent to L[0].

• If L is empty, the command will fail with an error.

Example 1:

> head([|1,2,3|]);

1

> head([|1,2...|]);

1

See also: tail (8.169)

8.73 hexadecimal

Name: hexadecimal
special value for global state display
Description:

• hexadecimal is a special value used for the global state display. If the global state display is
equal to hexadecimal, all data will be output in hexadecimal C99/ IEEE 754-2008 notation.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.31), dyadic (8.46), powers (8.122), binary (8.18), display (8.41)

8.74 honorcoeffprec

Name: honorcoeffprec
indicates the (forced) honoring the precision of the coefficients in implementpoly
Usage:

honorcoeffprec : honorcoeffprec

Description:

• Used with command implementpoly, honorcoeffprec makes implementpoly honor the preci-
sion of the given polynomial. This means if a coefficient needs a double-double or a triple-double
to be exactly stored, implementpoly will allocate appropriate space and use a double-double or
triple-double operation even if the automatic (heuristic) determination implemented in command
implementpoly indicates that the coefficient could be stored on less precision or, respectively,
the operation could be performed with less precision. See implementpoly for details.

Example 1:

90

> verbosity = 1!;

> q = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp

lementation.c");

Warning: at least one of the coefficients of the given polynomial has been round

ed in a way

that the target precision can be achieved at lower cost. Nevertheless, the imple

mented polynomial

is different from the given one.

> printexpansion(q);

0x3ff0000000000000 + x^2 * 0xbfc5555555555555

> r = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp

lementation.c",honorcoeffprec);

Warning: the infered precision of the 2th coefficient of the polynomial is great

er than

the necessary precision computed for this step. This may make the automatic dete

rmination

of precisions useless.

> printexpansion(r);

0x3ff0000000000000 + x^2 * (0xbfc5555555555555 + 0xbc65555555555555 + 0xb9055555

55555555)

See also: implementpoly (8.79), printexpansion (8.128), fpminimax (8.65)

8.75 hopitalrecursions

Name: hopitalrecursions
controls the number of recursion steps when applying L’Hopital’s rule.
Usage:

hopitalrecursions = n : integer → void
hopitalrecursions = n ! : integer → void

hopitalrecursions : integer

Parameters:

• n represents the number of recursions

Description:

• hopitalrecursions is a global variable. Its value represents the number of steps of recursion that
are tried when applying L’Hopital’s rule. This rule is applied by the interval evaluator present in
the core of Sollya (and particularly visible in commands like infnorm).

• If an expression of the form f/g has to be evaluated by interval arithmetic on an interval I and if f
and g have a common zero in I, a direct evaluation leads to NaN. Sollya implements a safe heuristic
to avoid this, based on L’Hopital’s rule: in such a case, it can be shown that (f/g)(I) ⊆ (f ′/g′)(I).
Since the same problem may exist for f ′/g′, the rule is applied recursively. The number of step in
this recursion process is controlled by hopitalrecursions.

• Setting hopitalrecursions to 0 makes Sollya use this rule only once; setting it to 1 makes Sollya
use the rule twice, and so on. In particular: the rule is always applied at least once, if necessary.

Example 1:

91

> hopitalrecursions=0;

The number of recursions for Hopital’s rule has been set to 0.

> evaluate(log(1+x)^2/x^2,[-1/2; 1]);

[-@Inf@;@Inf@]

> hopitalrecursions=1;

The number of recursions for Hopital’s rule has been set to 1.

> evaluate(log(1+x)^2/x^2,[-1/2; 1]);

[-2.52258872223978123766892848583270627230200053744108;6.77258872223978123766892

84858327062723020005374411]

See also: taylorrecursions (8.174), infnorm (8.82), findzeros (8.61), evaluate (8.51)

8.76 horner

Name: horner
brings all polynomial subexpressions of an expression to Horner form
Usage:

horner(function) : function → function

Parameters:

• function represents the expression to be rewritten in Horner form

Description:

• The command horner rewrites the expression representing the function function in a way such that
all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written in
Horner form. The command horner does not endanger the safety of computations even in Sollya’s
floating-point environment: the function returned is mathematically equal to the function function.

Example 1:

> print(horner(1 + 2 * x + 3 * x^2));

1 + x * (2 + x * 3)

> print(horner((x + 1)^7));

1 + x * (7 + x * (21 + x * (35 + x * (35 + x * (21 + x * (7 + x))))))

Example 2:

> print(horner(exp((x + 1)^5) - log(asin(x + x^3) + x)));

exp(1 + x * (5 + x * (10 + x * (10 + x * (5 + x))))) - log(asin(x * (1 + x^2)) +

x)

See also: canonical (8.20), print (8.126), coeff (8.23), degree (8.33), autosimplify (8.15), simpli-
fysafe (8.158)

8.77 HP

Name: HP
short form for halfprecision
See also: halfprecision (8.71)

8.78 implementconstant

Name: implementconstant
implements a constant in arbitrary precision
Usage:

92

implementconstant(expr) : constant → void
implementconstant(expr,filename) : (constant, string) → void

implementconstant(expr,filename,functionname) : (constant, string, string) → void

Description:

• The command implementconstant implements the constant expression expr in arbitrary preci-
sion. More precisely, it generates the source code (written in C, and using MPFR) of a C function
const something with the following signature:

void const something (mpfr ptr y, mp prec t prec)

Let us denote by c the exact mathematical value of the constant defined by the expression expr.
When called with arguments y and prec (where the variable y is supposed to be already initialized),
the function mpfr const something sets the precision of y to a suitable precision and stores in it
an approximate value of c such that

|y − c| ≤ |c| 21−prec.

• When no filename filename is given or if default is given as filename, the source code produced by
implementconstant is printed on standard output. Otherwise, when filename is given as a string
of characters, the source code is output to a file named filename. If that file cannot be opened
and/or written to, implementconstant fails and has no other effect.

• When functionname is given as an argument to implementconstant and functionname evaluates
to a string of characters, the default name for the C function const something is replaced by
functionname. When default is given as functionname, the default name is used nevertheless, as
if no functionname argument were given. When choosing a character sequence for functionname,
the user should keep attention to the fact that functionname must be a valid C identifier in order
to enable error-free compilation of the produced code.

• If expr refers to a constant defined with libraryconstant, the produced code uses the external
code implementing this constant. The user should keep in mind that it is up to them to make sure
the symbol for that external code can get resolved when the newly generated code is to be loaded.

• If a subexpression of expr evaluates to 0, implementconstant will most likely fail with an error
message.

• implementconstant is unable to implement constant expressions expr that contain procedure-
based functions, i.e. functions created from Sollya procedures using the function construct. If
expr contains such a procedure-based function, implementconstant prints a warning and fails
silently. The reason for this lack of functionality is that the produced C source code, which is
supposed to be compiled, would have to call back to the Sollya interpreter in order to evaluate
the procedure-based function.

• Similarily, implementconstant is currently unable to implement constant expressions expr that
contain library-based functions, i.e. functions dynamically bound to Sollya using the library
construct. If expr contains such a library-based function, implementconstant prints a warning
and fails silently. Support for this feature is in principle feasible from a technical standpoint and
might be added in a future release of Sollya.

• Currently, non-differentiable functions such as double, doubledouble, tripledouble, single,
halfprecision, quad, doubleextended, floor, ceil, nearestint are not supported by imple-
mentconstant. If implementconstant encounters one of them, a warning message is displayed
and no code is produced. However, if autosimplify equals on, it is possible that Sollya silently
simplifies subexpressions of expr containing such functions and that implementconstant success-
fully produces code for evaluating expr.

93

• While it produces an MPFR-based C source code for expr, implementconstant takes architectural
and system-dependent parameters into account. For example, it checks whether literal constants
figuring in expr can be represented on a C long int type or if they must be stored in a different
manner not to affect their accuracy. These tests, performed by Sollya during execution of imple-
mentconstant, depend themselves on the architecture Sollya is running on. Users should keep
this matter in mind, especially when trying to compile source code on one machine whilst it has
been produced on another.

Example 1:

94

> implementconstant(exp(1)+log(2)/sqrt(1/10));

#include <mpfr.h>

void

const_something (mpfr_ptr y, mp_prec_t prec)

{

/* Declarations */

mpfr_t tmp1;

mpfr_t tmp2;

mpfr_t tmp3;

mpfr_t tmp4;

mpfr_t tmp5;

mpfr_t tmp6;

mpfr_t tmp7;

/* Initializations */

mpfr_init2 (tmp2, prec+5);

mpfr_init2 (tmp1, prec+3);

mpfr_init2 (tmp4, prec+8);

mpfr_init2 (tmp3, prec+7);

mpfr_init2 (tmp6, prec+11);

mpfr_init2 (tmp7, prec+11);

mpfr_init2 (tmp5, prec+11);

/* Core */

mpfr_set_prec (tmp2, prec+4);

mpfr_set_ui (tmp2, 1, MPFR_RNDN);

mpfr_set_prec (tmp1, prec+3);

mpfr_exp (tmp1, tmp2, MPFR_RNDN);

mpfr_set_prec (tmp4, prec+8);

mpfr_set_ui (tmp4, 2, MPFR_RNDN);

mpfr_set_prec (tmp3, prec+7);

mpfr_log (tmp3, tmp4, MPFR_RNDN);

mpfr_set_prec (tmp6, prec+11);

mpfr_set_ui (tmp6, 1, MPFR_RNDN);

mpfr_set_prec (tmp7, prec+11);

mpfr_set_ui (tmp7, 10, MPFR_RNDN);

mpfr_set_prec (tmp5, prec+11);

mpfr_div (tmp5, tmp6, tmp7, MPFR_RNDN);

mpfr_set_prec (tmp4, prec+7);

mpfr_sqrt (tmp4, tmp5, MPFR_RNDN);

mpfr_set_prec (tmp2, prec+5);

mpfr_div (tmp2, tmp3, tmp4, MPFR_RNDN);

mpfr_set_prec (y, prec+3);

mpfr_add (y, tmp1, tmp2, MPFR_RNDN);

/* Cleaning stuff */

mpfr_clear(tmp1);

mpfr_clear(tmp2);

mpfr_clear(tmp3);

mpfr_clear(tmp4);

mpfr_clear(tmp5);

mpfr_clear(tmp6);

mpfr_clear(tmp7);

}

95

Example 2:

> implementconstant(sin(13/17),"sine_of_thirteen_seventeenth.c");

> readfile("sine_of_thirteen_seventeenth.c");

#include <mpfr.h>

void

const_something (mpfr_ptr y, mp_prec_t prec)

{

/* Declarations */

mpfr_t tmp1;

mpfr_t tmp2;

mpfr_t tmp3;

/* Initializations */

mpfr_init2 (tmp2, prec+6);

mpfr_init2 (tmp3, prec+6);

mpfr_init2 (tmp1, prec+6);

/* Core */

mpfr_set_prec (tmp2, prec+6);

mpfr_set_ui (tmp2, 13, MPFR_RNDN);

mpfr_set_prec (tmp3, prec+6);

mpfr_set_ui (tmp3, 17, MPFR_RNDN);

mpfr_set_prec (tmp1, prec+6);

mpfr_div (tmp1, tmp2, tmp3, MPFR_RNDN);

mpfr_set_prec (y, prec+2);

mpfr_sin (y, tmp1, MPFR_RNDN);

/* Cleaning stuff */

mpfr_clear(tmp1);

mpfr_clear(tmp2);

mpfr_clear(tmp3);

}

Example 3:

96

> implementconstant(asin(1/3 * pi),default,"arcsin_of_one_third_pi");

#include <mpfr.h>

void

arcsin_of_one_third_pi (mpfr_ptr y, mp_prec_t prec)

{

/* Declarations */

mpfr_t tmp1;

mpfr_t tmp2;

mpfr_t tmp3;

/* Initializations */

mpfr_init2 (tmp2, prec+8);

mpfr_init2 (tmp3, prec+8);

mpfr_init2 (tmp1, prec+8);

/* Core */

mpfr_set_prec (tmp2, prec+8);

mpfr_const_pi (tmp2, MPFR_RNDN);

mpfr_set_prec (tmp3, prec+8);

mpfr_set_ui (tmp3, 3, MPFR_RNDN);

mpfr_set_prec (tmp1, prec+8);

mpfr_div (tmp1, tmp2, tmp3, MPFR_RNDN);

mpfr_set_prec (y, prec+2);

mpfr_asin (y, tmp1, MPFR_RNDN);

/* Cleaning stuff */

mpfr_clear(tmp1);

mpfr_clear(tmp2);

mpfr_clear(tmp3);

}

Example 4:

> implementconstant(ceil(log(19 + 1/3)),"constant_code.c","magic_constant");

> readfile("constant_code.c");

#include <mpfr.h>

void

magic_constant (mpfr_ptr y, mp_prec_t prec)

{

/* Initializations */

/* Core */

mpfr_set_prec (y, prec);

mpfr_set_ui (y, 3, MPFR_RNDN);

}

Example 5:

97

> bashexecute("gcc -fPIC -Wall -c libraryconstantexample.c -I$HOME/.local/includ

e");

> bashexecute("gcc -shared -o libraryconstantexample libraryconstantexample.o -l

gmp -lmpfr");

> euler_gamma = libraryconstant("./libraryconstantexample");

> implementconstant(euler_gamma^(1/3));

#include <mpfr.h>

void

const_something (mpfr_ptr y, mp_prec_t prec)

{

/* Declarations */

mpfr_t tmp1;

/* Initializations */

mpfr_init2 (tmp1, prec+1);

/* Core */

euler_gamma (tmp1, prec+1);

mpfr_set_prec (y, prec+2);

mpfr_root (y, tmp1, 3, MPFR_RNDN);

/* Cleaning stuff */

mpfr_clear(tmp1);

}

See also: implementpoly (8.79), libraryconstant (8.90), library (8.89), function (8.67)

8.79 implementpoly

Name: implementpoly
implements a polynomial using double, double-double and triple-double arithmetic and generates a
Gappa proof
Usage:

implementpoly(polynomial, range, error bound, format, functionname, filename) : (function, range,
constant, D|double|DD|doubledouble|TD|tripledouble, string, string) → function

implementpoly(polynomial, range, error bound, format, functionname, filename, honor coefficient
precisions) : (function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string, string,

honorcoeffprec) → function
implementpoly(polynomial, range, error bound, format, functionname, filename, proof filename) :
(function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string, string, string) → function
implementpoly(polynomial, range, error bound, format, functionname, filename, honor coefficient

precisions, proof filename) : (function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string,
string, honorcoeffprec, string) → function

Description:

• The command implementpoly implements the polynomial polynomial in range range as a function
called functionname in C code using double, double-double and triple-double arithmetic in a way
that the rounding error (estimated at its first order) is bounded by error bound. The produced code
is output in a file named filename. The argument format indicates the double, double-double or
triple-double format of the variable in which the polynomial varies, influencing also in the signature
of the C function.

If a seventh or eighth argument proof filename is given and if this argument evaluates to a variable
of type string, the command implementpoly will produce a Gappa proof that the rounding error is
less than the given bound. This proof will be output in Gappa syntax in a file name proof filename.

98

The command implementpoly returns the polynomial that has been implemented. As the com-
mand implementpoly tries to adapt the precision needed in each evaluation step to its strict
minimum and as it applies renormalization to double-double and triple-double precision coeffi-
cients to bring them to a round-to-nearest expansion form, the returned polynomial may differ
from the polynomial polynomial. Nevertheless the difference will be small enough that the round-
ing error bound with regard to the polynomial polynomial (estimated at its first order) will be less
than the given error bound.

If a seventh argument honor coefficient precisions is given and evaluates to a variable honorco-
effprec of type honorcoeffprec, implementpoly will honor the precision of the given polynomial
polynomials. This means if a coefficient needs a double-double or a triple-double to be exactly
stored, implementpoly will allocate appropriate space and use a double-double or triple-double
operation even if the automatic (heuristic) determination implemented in command implement-
poly indicates that the coefficient could be stored on less precision or, respectively, the operation
could be performed with less precision. The use of honorcoeffprec has advantages and disad-
vantages. If the polynomial polynomial given has not been determined by a process considering
directly polynomials with floating-point coefficients, honorcoeffprec should not be indicated. The
implementpoly command can then determine the needed precision using the same error estima-
tion as used for the determination of the precisions of the operations. Generally, the coefficients
will get rounded to double, double-double and triple-double precision in a way that minimizes their
number and respects the rounding error bound error bound. Indicating honorcoeffprec may in
this case short-circuit most precision estimations leading to sub-optimal code. On the other hand,
if the polynomial polynomial has been determined with floating-point precisions in mind, honor-
coeffprec should be indicated because such polynomials often are very sensitive in terms of error
propagation with regard to their coefficients’ values. Indicating honorcoeffprec prevents the im-
plementpoly command from rounding the coefficients and altering by many orders of magnitude
the approximation error of the polynomial with regard to the function it approximates.

The implementer behind the implementpoly command makes some assumptions on its input
and verifies them. If some assumption cannot be verified, the implementation will not succeed and
implementpoly will evaluate to a variable error of type error. The same behaviour is observed if
some file is not writable or some other side-effect fails, e.g. if the implementer runs out of memory.

As error estimation is performed only on the first order, the code produced by the implementpoly
command should be considered valid iff a Gappa proof has been produced and successfully run in
Gappa.

Example 1:

99

> implementpoly(1 - 1/6 * x^2 + 1/120 * x^4, [-1b-10;1b-10], 1b-30, D, "p","impl

ementation.c");

1 + x^2 * (-0.166666666666666657414808128123695496469736099243164 + x^2 * 8.3333

333333333332176851016015461937058717012405395e-3)

> readfile("implementation.c");

#define p_coeff_0h 1.000

000000000000000000000e+00

#define p_coeff_2h -1.6666666666666665741480812812369549646973609924316406250000

0000000000000000000000e-01

#define p_coeff_4h 8.33333333333333321768510160154619370587170124053955078125000

000000000000000000000e-03

void p(double *p_resh, double x) {

double p_x_0_pow2h;

p_x_0_pow2h = x * x;

double p_t_1_0h;

double p_t_2_0h;

double p_t_3_0h;

double p_t_4_0h;

double p_t_5_0h;

p_t_1_0h = p_coeff_4h;

p_t_2_0h = p_t_1_0h * p_x_0_pow2h;

p_t_3_0h = p_coeff_2h + p_t_2_0h;

p_t_4_0h = p_t_3_0h * p_x_0_pow2h;

p_t_5_0h = p_coeff_0h + p_t_4_0h;

*p_resh = p_t_5_0h;

}

Example 2:

> implementpoly(1 - 1/6 * x^2 + 1/120 * x^4, [-1b-10;1b-10], 1b-30, D, "p","impl

ementation.c","implementation.gappa");

1 + x^2 * (-0.166666666666666657414808128123695496469736099243164 + x^2 * 8.3333

333333333332176851016015461937058717012405395e-3)

Example 3:

100

> verbosity = 1!;

> q = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp

lementation.c");

Warning: at least one of the coefficients of the given polynomial has been round

ed in a way

that the target precision can be achieved at lower cost. Nevertheless, the imple

mented polynomial

is different from the given one.

> printexpansion(q);

0x3ff0000000000000 + x^2 * 0xbfc5555555555555

> r = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp

lementation.c",honorcoeffprec);

Warning: the infered precision of the 2th coefficient of the polynomial is great

er than

the necessary precision computed for this step. This may make the automatic dete

rmination

of precisions useless.

> printexpansion(r);

0x3ff0000000000000 + x^2 * (0xbfc5555555555555 + 0xbc65555555555555 + 0xb9055555

55555555)

Example 4:

> p = 0x3ff0000000000000 + x * (0x3ff0000000000000 + x * (0x3fe0000000000000 + x

* (0x3fc5555555555559 + x * (0x3fa55555555555bd + x * (0x3f811111111106e2 + x

* (0x3f56c16c16bf5eb7 + x * (0x3f2a01a01a292dcd + x * (0x3efa01a0218a016a + x

* (0x3ec71de360331aad + x * (0x3e927e42e3823bf3 + x * (0x3e5ae6b2710c2c9a + x

* (0x3e2203730c0a7c1d + x * 0x3de5da557e0781df))))))))))));

> q = implementpoly(p,[-1/2;1/2],1b-60,D,"p","implementation.c",honorcoeffprec,"

implementation.gappa");

> if (q != p) then print("During implementation, rounding has happened.") else p

rint("Polynomial implemented as given.");

Polynomial implemented as given.

See also: honorcoeffprec (8.74), roundcoefficients (8.150), double (8.43), doubledouble (8.44),
tripledouble (8.178), readfile (8.140), printexpansion (8.128), error (8.50), remez (8.143), fpmin-
imax (8.65), taylor (8.172), implementconstant (8.78)

8.80 in

Name: in
containment test operator
Usage:

expr in range1 : (constant, range) → boolean
range1 in range2 : (range, range) → boolean

Parameters:

• expr represents a constant expression

• range1 and range2 represent ranges (intervals)

Description:

• When its first operand is a constant expression expr, the operator in evaluates to true iff the
constant value of the expression expr is contained in the interval range1.

101

• When both its operands are ranges (intervals), the operator in evaluates to true iff all values in
range1 are contained in the interval range2.

• in is also used as a keyword for loops over the different elements of a list.

Example 1:

> 5 in [-4;7];

true

> 4 in [-1;1];

false

> 0 in sin([-17;17]);

true

Example 2:

> [5;7] in [2;8];

true

> [2;3] in [4;5];

false

> [2;3] in [2.5;5];

false

Example 3:

> for i in [|1,...,5|] do print(i);

1

2

3

4

5

See also: == (8.47), != (8.105), >= (8.68), > (8.69), <= (8.87), < (8.96), ! (8.107), && (8.6), || (8.112),
prec (8.123), print (8.126)

8.81 inf

Name: inf
gives the lower bound of an interval.
Usage:

inf(I) : range → constant
inf(x) : constant → constant

Parameters:

• I is an interval.

• x is a real number.

Description:

• Returns the lower bound of the interval I. Each bound of an interval has its own precision, so this
command is exact, even if the current precision is too small to represent the bound.

• When called on a real number x, inf considers it as an interval formed of a single point: [x, x]. In
other words, inf behaves like the identity.

Example 1:

102

> inf([1;3]);

1

> inf(0);

0

Example 2:

> display=binary!;

> I=[0.111110000011111_2; 1];

> inf(I);

1.11110000011111_2 * 2^(-1)

> prec=12!;

> inf(I);

1.11110000011111_2 * 2^(-1)

See also: mid (8.99), sup (8.167), max (8.98), min (8.101)

8.82 infnorm

Name: infnorm
computes an interval bounding the infinity norm of a function on an interval.
Usage:

infnorm(f,I,filename,Ilist) : (function, range, string, list) → range

Parameters:

• f is a function.

• I is an interval.

• filename (optional) is the name of the file into a proof will be saved.

• IList (optional) is a list of intervals to be excluded.

Description:

• infnorm(f,range) computes an interval bounding the infinity norm of the given function f on the
interval I, e.g. computes an interval J such that maxx∈I{|f(x)|} ⊆ J .

• If filename is given, a proof in English will be produced (and stored in file called filename) proving
that maxx∈I{|f(x)|} ⊆ J .

• If a list IList of intervals I1, . . . , In is given, the infinity norm will be computed on I\(I1∪ . . .∪ In).

• The function f is assumed to be at least twice continuous on I. More generally, if f is Ck, global
variables hopitalrecursions and taylorrecursions must have values not greater than k.

• If the interval is reduced to a single point, the result of infnorm is an interval containing the exact
absolute value of f at this point.

• If the interval is not bound, the result will be [0, +∞] which is correct but perfectly useless.
infnorm is not meant to be used with infinite intervals.

• The result of this command depends on the global variables prec, diam, taylorrecursions and
hopitalrecursions. The contribution of each variable is not easy even to analyse.

– The algorithm uses interval arithmetic with precision prec. The precision should thus be set
high enough to ensure that no critical cancellation will occur.

103

– When an evaluation is performed on an interval [a, b], if the result is considered being too
large, the interval is split into [a, a+b

2] and [a+b
2 , b] and so on recursively. This recursion step

is not performed if the (b− a) < δ · |I| where δ is the value of variable diam. In other words,
diam controls the minimum length of an interval during the algorithm.

– To perform the evaluation of a function on an interval, Taylor’s rule is applied, e.g. f([a, b]) ⊆
f(m) + [a − m, b − m] · f ′([a, b]) where m = a+b

2 . This rule is recursively applied n times
where n is the value of variable taylorrecursions. Roughly speaking, the evaluations will
avoid decorrelation up to order n.

– When a function of the form g
h has to be evaluated on an interval [a, b] and when g and h vanish

at a same point z of the interval, the ratio may be defined even if the expression g(z)
h(z) = 0

0 does

not make any sense. In this case, L’Hopital’s rule may be used and
(
g
h

)
([a, b]) ⊆

(
g′

h′

)
([a, b]).

Since the same can occur with the ratio g′

h′ , the rule is applied recursively. The variable
hopitalrecursions controls the number of recursion steps.

• The algorithm used for this command is quite complex to be explained here. Please find a complete
description in the following article:
S. Chevillard and C. Lauter
A certified infinity norm for the implementation of elementary functions
LIP Research Report number RR2007-26
http://prunel.ccsd.cnrs.fr/ensl-00119810

• Users should be aware about the fact that the algorithm behind infnorm is inefficient in most
cases and that other, better suited algorithms, such as supnorm, are available inside Sollya. As
a matter of fact, while infnorm is maintained for compatibility reasons with legacy Sollya codes,
users are advised to avoid using infnorm in new Sollya scripts and to replace it, where possible,
by the supnorm command.

Example 1:

> infnorm(exp(x),[-2;3]);

[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928

5296545817178969879078385544e1]

Example 2:

> infnorm(exp(x),[-2;3],"proof.txt");

[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928

5296545817178969879078385544e1]

Example 3:

> infnorm(exp(x),[-2;3],[| [0;1], [2;2.5] |]);

[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928

5296545817178969879078385544e1]

Example 4:

> infnorm(exp(x),[-2;3],"proof.txt", [| [0;1], [2;2.5] |]);

[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928

5296545817178969879078385544e1]

Example 5:

> infnorm(exp(x),[1;1]);

[2.71828182845904523536028747135266249775724709369989;2.718281828459045235360287

47135266249775724709369998]

104

Example 6:

> infnorm(exp(x), [log(0);log(1)]);

[0;@Inf@]

See also: prec (8.123), diam (8.35), hopitalrecursions (8.75), dirtyinfnorm (8.39), checkinfnorm
(8.22), supnorm (8.168), findzeros (8.61), diff (8.37), taylorrecursions (8.174), autodiff (8.14),
numberroots (8.108), taylorform (8.173)

8.83 integer

Name: integer
keyword representing a machine integer type
Usage:

integer : type type

Description:

• integer represents the machine integer type for declarations of external procedures externalproc.

Remark that in contrast to other indicators, type indicators like integer cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.58), boolean (8.19), constant (8.25), function (8.67), list of (8.91), range
(8.136), string (8.164)

8.84 integral

Name: integral
computes an interval bounding the integral of a function on an interval.
Usage:

integral(f,I) : (function, range) → range

Parameters:

• f is a function.

• I is an interval.

Description:

• integral(f,I) returns an interval J such that the exact value of the integral of f on I lies in J .

• This command is safe but very inefficient. Use dirtyintegral if you just want an approximate
value.

• The result of this command depends on the global variable diam. The method used is the following:
I is cut into intervals of length not greater then δ · |I| where δ is the value of global variable diam.
On each small interval J, an evaluation of f by interval is performed. The result is multiplied by
the length of J. Finally all values are summed.

Example 1:

> sin(10);

-0.54402111088936981340474766185137728168364301291621

> integral(cos(x),[0;10]);

[-0.54710197983579690224097637163525943075698599257332;-0.5409401513001318384815

0540881373370744053741191728]

> diam=1e-5!;

> integral(cos(x),[0;10]);

[-0.54432915685955427101857780295936956775293876382777;-0.5437130640124996950803

9644221927489010425803173555]

See also: diam (8.35), dirtyintegral (8.40), prec (8.123)

105

8.85 isbound

Name: isbound
indicates whether a variable is bound or not.
Usage:

isbound(ident) : boolean

Parameters:

• ident is a name.

Description:

• isbound(ident) returns a boolean value indicating whether the name ident is used or not to
represent a variable. It returns true when ident is the name used to represent the global variable
or if the name is currently used to refer to a (possibly local) variable.

• When a variable is defined in a block and has not been defined outside, isbound returns true when
called inside the block, and false outside. Note that isbound returns true as soon as a variable
has been declared with var, even if no value is actually stored in it.

• If ident1 is bound to a variable and if ident2 refers to the global variable, the command re-
name(ident2, ident1) hides the value of ident1 which becomes the global variable. However, if the
global variable is again renamed, ident1 gets its value back. In this case, isbound(ident1) returns
true. If ident1 was not bound before, isbound(ident1) returns false after that ident1 has been
renamed.

Example 1:

> isbound(x);

false

> isbound(f);

false

> isbound(g);

false

> f=sin(x);

> isbound(x);

true

> isbound(f);

true

> isbound(g);

false

Example 2:

> isbound(a);

false

> { var a; isbound(a); };

true

> isbound(a);

false

Example 3:

> f=sin(x);

> isbound(x);

true

> rename(x,y);

> isbound(x);

false

106

Example 4:

> x=1;

> f=sin(y);

> rename(y,x);

> f;

sin(x)

> x;

x

> isbound(x);

true

> rename(x,y);

> isbound(x);

true

> x;

1

See also: rename (8.144)

8.86 isevaluable

Name: isevaluable
tests whether a function can be evaluated at a point
Usage:

isevaluable(function, constant) : (function, constant) → boolean

Parameters:

• function represents a function

• constant represents a constant point

Description:

• isevaluable applied to function function and a constant constant returns a boolean indicating
whether or not a subsequent call to evaluate on the same function function and constant constant
will produce a numerical result or NaN. This means isevaluable returns false iff evaluate will
return NaN.

Example 1:

> isevaluable(sin(pi * 1/x), 0.75);

true

> print(evaluate(sin(pi * 1/x), 0.75));

-0.86602540378443864676372317075293618347140262690518

Example 2:

> isevaluable(sin(pi * 1/x), 0.5);

true

> print(evaluate(sin(pi * 1/x), 0.5));

[-1.72986452514381269516508615031098129542836767991679e-12715;7.5941198201187963

145069564314525661706039084390067e-12716]

Example 3:

> isevaluable(sin(pi * 1/x), 0);

false

> print(evaluate(sin(pi * 1/x), 0));

[@NaN@;@NaN@]

See also: evaluate (8.51)

107

8.87 <=

Name: <=
less-than-or-equal-to operator
Usage:

expr1 <= expr2 : (constant, constant) → boolean

Parameters:

• expr1 and expr2 represent constant expressions

Description:

• The operator <= evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers a1 respectively a2 with the global precision prec and a1 is less than or equal to a2. The
user should be aware of the fact that because of floating-point evaluation, the operator <= is not
exactly the same as the mathematical operation less-than-or-equal-to.

Example 1:

> 5 <= 4;

false

> 5 <= 5;

true

> 5 <= 6;

true

> exp(2) <= exp(1);

false

> log(1) <= exp(2);

true

Example 2:

> prec = 12;

The precision has been set to 12 bits.

> 16385.1 <= 16384.1;

true

See also: == (8.47), != (8.105), >= (8.68), > (8.69), < (8.96), in (8.80), ! (8.107), && (8.6), || (8.112),
prec (8.123), max (8.98), min (8.101)

8.88 length

Name: length
computes the length of a list or string.
Usage:

length(L) : list → integer
length(s) : string → integer

Parameters:

• L is a list.

• s is a string.

Description:

• length returns the length of a list or a string, e.g. the number of elements or letters.

• The empty list or string have length 0. If L is an end-elliptic list, length returns +Inf.

108

Example 1:

> length("Hello World!");

12

Example 2:

> length([|1,...,5|]);

5

Example 3:

> length([| |]);

0

Example 4:

> length([|1,2...|]);

@Inf@

8.89 library

Name: library
binds an external mathematical function to a variable in Sollya

Usage:

library(path) : string → function

Description:

• The command library lets you extend the set of mathematical functions known to Sollya. By
default, Sollya knows the most common mathematical functions such as exp, sin, erf, etc. Within
Sollya, these functions may be composed. This way, Sollya should satisfy the needs of a lot of
users. However, for particular applications, one may want to manipulate other functions such as
Bessel functions, or functions defined by an integral or even a particular solution of an ODE.

• library makes it possible to let Sollya know about new functions. In order to let it know, you
have to provide an implementation of the function you are interested in. This implementation is a
C file containing a function of the form:

int my_ident(sollya_mpfi_t result, sollya_mpfi_t op, int n)

The semantic of this function is the following: it is an implementation of the function and its
derivatives in interval arithmetic. my_ident(result, I, n) shall store in result an enclosure of
the image set of the n-th derivative of the function f over I: f (n)(I) ⊆ result.

• The integer value returned by the function implementation currently has no meaning.

• You do not need to provide a working implementation for any n. Most functions of Sollya requires
a relevant implementation only for f , f ′ and f ′′. For higher derivatives, its is not so critical and
the implementation may just store [−∞, +∞] in result whenever n > 2.

• Note that you should respect somehow interval-arithmetic standards in your implementation:
result has its own precision and you should perform the intermediate computations so that result
is as tight as possible.

• You can include sollya.h in your implementation and use library functionnalities of Sollya for your
implementation. However, this requires to have compiled Sollya with -fPIC in order to make the
Sollya executable code position independent and to use a system on with programs, using dlopen

to open dynamic routines can dynamically open themselves.

109

• To bind your function into Sollya, you must use the same identifier as the function name used in
your implementation file (my_ident in the previous example). Once the function code has been
bound to an identifier, you can use a simple assignment to assign the bound identifier to yet another
identifier. This way, you may use convenient names inside Sollya even if your implementation
environment requires you to use a less convenient name.

Example 1:

> bashexecute("gcc -fPIC -Wall -c libraryexample.c -I$HOME/.local/include");

> bashexecute("gcc -shared -o libraryexample libraryexample.o -lgmp -lmpfr");

> myownlog = library("./libraryexample");

> evaluate(log(x), 2);

0.69314718055994530941723212145817656807550013436024

> evaluate(myownlog(x), 2);

0.69314718055994530941723212145817656807550013436024

See also: function (8.67), bashexecute (8.17), externalproc (8.58), externalplot (8.57), diff (8.37),
evaluate (8.51), libraryconstant (8.90)

8.90 libraryconstant

Name: libraryconstant
binds an external mathematical constant to a variable in Sollya

Usage:

libraryconstant(path) : string → function

Description:

• The command libraryconstant lets you extend the set of mathematical constants known to
Sollya. By default, the only mathematical constant known by Sollya is pi. For particular
applications, one may want to manipulate other constants, such as Euler’s gamma constant, for
instance.

• libraryconstant makes it possible to let Sollya know about new constants. In order to let it know,
you have to provide an implementation of the constant you are interested in. This implementation
is a C file containing a function of the form:

void my_ident(mpfr_t result, mp_prec_t prec)

The semantic of this function is the following: it is an implementation of the constant in arbitrary
precision. my_ident(result, prec) shall set the precision of the variable result to a suitable
precision (the variable is assumed to be already initialized) and store in result an approximate
value of the constant with a relative error not greater than 21−prec. More precisely, if c is the exact
value of the constant, the value stored in result should satisfy

|result− c| ≤ |c| 21−prec.

• You can include sollya.h in your implementation and use library functionnalities of Sollya for your
implementation. However, this requires to have compiled Sollya with -fPIC in order to make the
Sollya executable code position independent and to use a system on with programs, using dlopen

to open dynamic routines can dynamically open themselves.

• To bind your constant into Sollya, you must use the same identifier as the function name used
in your implementation file (my_ident in the previous example). Once the function code has been
bound to an identifier, you can use a simple assignment to assign the bound identifier to yet another
identifier. This way, you may use convenient names inside Sollya even if your implementation
environment requires you to use a less convenient name.

110

• Once your constant is bound, it is considered by Sollya as an infinitely accurate constant (i.e. a
0-ary function, exactly like pi).

Example 1:

> bashexecute("gcc -fPIC -Wall -c libraryconstantexample.c -I$HOME/.local/includ

e");

> bashexecute("gcc -shared -o libraryconstantexample libraryconstantexample.o -l

gmp -lmpfr");

> euler_gamma = libraryconstant("./libraryconstantexample");

> prec = 20!;

> euler_gamma;

0.577215

> prec = 100!;

> euler_gamma;

0.577215664901532860606512090082

> midpointmode = on;

Midpoint mode has been activated.

> [euler_gamma];

0.577215664901532860606512090~0/1~

See also: bashexecute (8.17), externalproc (8.58), externalplot (8.57), pi (8.115), library (8.89),
evaluate (8.51), implementconstant (8.78)

8.91 list of

Name: list of
keyword used in combination with a type keyword
Description:

• list of is used in combination with one of the following keywords for indicating lists of the respective
type in declarations of external procedures using externalproc: boolean, constant, function,
integer, range and string.

See also: externalproc (8.58), boolean (8.19), constant (8.25), function (8.67), integer (8.83),
range (8.136), string (8.164)

8.92 log

Name: log
natural logarithm.
Description:

• log is the natural logarithm defined as the inverse of the exponential function: log(y) is the unique
real number x such that exp(x) = y.

• It is defined only for y ∈ [0; +∞].

See also: exp (8.53), log2 (8.95), log10 (8.93)

8.93 log10

Name: log10
decimal logarithm.
Description:

• log10 is the decimal logarithm defined by: log10(x) = log(x)/ log(10).

• It is defined only for x ∈ [0; +∞].

See also: log (8.92), log2 (8.95)

111

8.94 log1p

Name: log1p
translated logarithm.
Description:

• log1p is the function defined by log1p(x) = log(1 + x).

• It is defined only for x ∈ [−1; +∞].

See also: log (8.92)

8.95 log2

Name: log2
binary logarithm.
Description:

• log2 is the binary logarithm defined by: log2(x) = log(x)/ log(2).

• It is defined only for x ∈ [0; +∞].

See also: log (8.92), log10 (8.93)

8.96 <

Name: <
less-than operator
Usage:

expr1 < expr2 : (constant, constant) → boolean

Parameters:

• expr1 and expr2 represent constant expressions

Description:

• The operator < evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers a1 respectively a2 with the global precision prec and a1 is less than a2. The user should
be aware of the fact that because of floating-point evaluation, the operator < is not exactly the
same as the mathematical operation less-than.

Example 1:

> 5 < 4;

false

> 5 < 5;

false

> 5 < 6;

true

> exp(2) < exp(1);

false

> log(1) < exp(2);

true

Example 2:

> prec = 12;

The precision has been set to 12 bits.

> 16384.1 < 16385.1;

false

See also: == (8.47), != (8.105), >= (8.68), > (8.69), <= (8.87), in (8.80), ! (8.107), && (8.6), || (8.112),
prec (8.123), max (8.98), min (8.101)

112

8.97 mantissa

Name: mantissa
returns the integer mantissa of a number.
Usage:

mantissa(x) : constant → integer

Parameters:

• x is a dyadic number.

Description:

• mantissa(x) is by definition x if x equals 0, NaN, or Inf.

• If x is not zero, it can be uniquely written as x = m · 2e where m is an odd integer and e is an
integer. mantissa(x) returns m.

Example 1:

> a=round(Pi,20,RN);

> e=exponent(a);

> m=mantissa(a);

> m;

411775

> a-m*2^e;

0

See also: exponent (8.56), precision (8.124)

8.98 max

Name: max
determines which of given constant expressions has maximum value
Usage:

max(expr1,expr2,...,exprn) : (constant, constant, ..., constant) → constant
max(l) : list → constant

Parameters:

• expr are constant expressions.

• l is a list of constant expressions.

Description:

• max determines which of a given set of constant expressions expr has maximum value. To do so,
max tries to increase the precision used for evaluation until it can decide the ordering or some
maximum precision is reached. In the latter case, a warning is printed indicating that there might
actually be another expression that has a greater value.

• Even though max determines the maximum expression by evaluation, it returns the expression that
is maximum as is, i.e. as an expression tree that might be evaluated to any accuracy afterwards.

• max can be given either an arbitrary number of constant expressions in argument or a list of
constant expressions. The list however must not be end-elliptic.

• Users should be aware that the behavior of max follows the IEEE 754-2008 standard with respect
to NaNs. In particular, a NaN given as the first argument will not be promoted as a result unless
the other argument is a NaN. This means that NaNs may seem to disappear during computations.

113

Example 1:

> max(1,2,3,exp(5),log(0.25));

1.48413159102576603421115580040552279623487667593878e2

> max(17);

17

Example 2:

> l = [|1,2,3,exp(5),log(0.25)|];

> max(l);

1.48413159102576603421115580040552279623487667593878e2

Example 3:

> print(max(exp(17),sin(62)));

exp(17)

Example 4:

> verbosity = 1!;

> print(max(17 + log2(13)/log2(9),17 + log(13)/log(9)));

Warning: maximum computation relies on floating-point result that is faithfully

evaluated and different faithful roundings toggle the result.

17 + log2(13) / log2(9)

See also: min (8.101), == (8.47), != (8.105), >= (8.68), > (8.69), < (8.96), <= (8.87), in (8.80), inf
(8.81), sup (8.167)

8.99 mid

Name: mid
gives the middle of an interval.
Usage:

mid(I) : range → constant
mid(x) : constant → constant

Parameters:

• I is an interval.

• x is a real number.

Description:

• Returns the middle of the interval I. If the middle is not exactly representable at the current
precision, the value is returned as an unevaluated expression.

• When called on a real number x, mid considers it as an interval formed of a single point: [x, x]. In
other words, mid behaves like the identity.

Example 1:

> mid([1;3]);

2

> mid(17);

17

See also: inf (8.81), sup (8.167)

114

8.100 midpointmode

Name: midpointmode
global variable controlling the way intervals are displayed.
Usage:

midpointmode = activation value : on|off → void
midpointmode = activation value ! : on|off → void

midpointmode : on|off

Parameters:

• activation value enables or disables the mode.

Description:

• midpointmode is a global variable. When its value is off, intervals are displayed as usual (in the
form [a; b]). When its value is on, and if a and b have the same first significant digits, the interval
in displayed in a way that lets one immediately see the common digits of the two bounds.

• This mode is supported only with display set to decimal. In other modes of display, midpoint-
mode value is simply ignored.

Example 1:

> a = round(Pi,30,RD);

> b = round(Pi,30,RU);

> d = [a,b];

> d;

[3.1415926516056060791015625;3.1415926553308963775634765625]

> midpointmode=on!;

> d;

0.314159265~1/6~e1

See also: on (8.111), off (8.110), roundingwarnings (8.152), display (8.41), decimal (8.31)

8.101 min

Name: min
determines which of given constant expressions has minimum value
Usage:

min(expr1,expr2,...,exprn) : (constant, constant, ..., constant) → constant
min(l) : list → constant

Parameters:

• expr are constant expressions.

• l is a list of constant expressions.

Description:

• min determines which of a given set of constant expressions expr has minimum value. To do so,
min tries to increase the precision used for evaluation until it can decide the ordering or some
maximum precision is reached. In the latter case, a warning is printed indicating that there might
actually be another expression that has a lesser value.

• Even though min determines the minimum expression by evaluation, it returns the expression that
is minimum as is, i.e. as an expression tree that might be evaluated to any accuracy afterwards.

• min can be given either an arbitrary number of constant expressions in argument or a list of
constant expressions. The list however must not be end-elliptic.

115

• Users should be aware that the behavior of min follows the IEEE 754-2008 standard with respect
to NaNs. In particular, a NaN given as the first argument will not be promoted as a result unless
the other argument is a NaN. This means that NaNs may seem to disappear during computations.

Example 1:

> min(1,2,3,exp(5),log(0.25));

-1.3862943611198906188344642429163531361510002687205

> min(17);

17

Example 2:

> l = [|1,2,3,exp(5),log(0.25)|];

> min(l);

-1.3862943611198906188344642429163531361510002687205

Example 3:

> print(min(exp(17),sin(62)));

sin(62)

Example 4:

> verbosity = 1!;

> print(min(17 + log2(13)/log2(9),17 + log(13)/log(9)));

Warning: minimum computation relies on floating-point result that is faithfully

evaluated and different faithful roundings toggle the result.

17 + log(13) / log(9)

See also: max (8.98), == (8.47), != (8.105), >= (8.68), > (8.69), < (8.96), <= (8.87), in (8.80), inf
(8.81), sup (8.167)

8.102 −
Name: −
subtraction function
Usage:

function1 − function2 : (function, function) → function
interval1 − interval2 : (range, range) → range

interval1 − constant : (range, constant) → range
interval1 − constant : (constant, range) → range

− function1 : function → function
− interval1 : range → range

Parameters:

• function1 and function2 represent functions

• interval1 and interval2 represent intervals (ranges)

• constant represents a constant or constant expression

Description:

• − represents the subtraction (function) on reals. The expression function1 − function2 stands for
the function composed of the subtraction function and the two functions function1 and function2,
where function1 is the subtrahend and function2 the subtractor.

116

• − can be used for interval arithmetic on intervals (ranges). − will evaluate to an interval that safely
encompasses all images of the subtraction function with arguments varying in the given intervals.
Any combination of intervals with intervals or constants (resp. constant expressions) is supported.
However, it is not possible to represent families of functions using an interval as one argument and
a function (varying in the free variable) as the other one.

• − stands also for the negation function.

Example 1:

> 5 - 2;

3

Example 2:

> x - 2;

-2 + x

Example 3:

> x - x;

0

Example 4:

> diff(sin(x) - exp(x));

cos(x) - exp(x)

Example 5:

> [1;2] - [3;4];

[-3;-1]

> [1;2] - 17;

[-16;-15]

> 13 - [-4;17];

[-4;17]

Example 6:

> -exp(x);

-exp(x)

> -13;

-13

> -[13;17];

[-17;-13]

See also: + (8.117), ∗ (8.103), / (8.42), ˆ (8.121)

8.103 ∗
Name: ∗
multiplication function
Usage:

function1 ∗ function2 : (function, function) → function
interval1 ∗ interval2 : (range, range) → range

interval1 ∗ constant : (range, constant) → range
interval1 ∗ constant : (constant, range) → range

117

Parameters:

• function1 and function2 represent functions

• interval1 and interval2 represent intervals (ranges)

• constant represents a constant or constant expression

Description:

• ∗ represents the multiplication (function) on reals. The expression function1 ∗ function2 stands
for the function composed of the multiplication function and the two functions function1 and
function2.

• ∗ can be used for interval arithmetic on intervals (ranges). ∗ will evaluate to an interval that
safely encompasses all images of the multiplication function with arguments varying in the given
intervals. Any combination of intervals with intervals or constants (resp. constant expressions) is
supported. However, it is not possible to represent families of functions using an interval as one
argument and a function (varying in the free variable) as the other one.

Example 1:

> 5 * 2;

10

Example 2:

> x * 2;

x * 2

Example 3:

> x * x;

x^2

Example 4:

> diff(sin(x) * exp(x));

sin(x) * exp(x) + exp(x) * cos(x)

Example 5:

> [1;2] * [3;4];

[3;8]

> [1;2] * 17;

[17;34]

> 13 * [-4;17];

[-52;221]

See also: + (8.117), − (8.102), / (8.42), ˆ (8.121)

8.104 nearestint

Name: nearestint
the function mapping the reals to the integers nearest to them.
Description:

• nearestint is defined as usual: nearestint(x) is the integer nearest to x, with the special rule
that the even integer is chosen if there exist two integers equally near to x.

• It is defined for every real number x.

See also: ceil (8.21), floor (8.64), round (8.149), RN (8.148)

118

8.105 !=

Name: !=
negated equality test operator
Usage:

expr1 != expr2 : (any type, any type) → boolean

Parameters:

• expr1 and expr2 represent expressions

Description:

• The operator != evaluates to true iff its operands expr1 and expr2 are syntactically unequal and
both different from error or constant expressions that are not constants and that evaluate to two
different floating-point number with the global precision prec. The user should be aware of the fact
that because of floating-point evaluation, the operator != is not exactly the same as the negation
of the mathematical equality.

Note that the expressions !(expr1 != expr2) and expr1 == expr2 do not evaluate to the same
boolean value. See error for details.

Example 1:

> "Hello" != "Hello";

false

> "Hello" != "Salut";

true

> "Hello" != 5;

true

> 5 + x != 5 + x;

false

Example 2:

> 1 != exp(0);

false

> asin(1) * 2 != pi;

false

> exp(5) != log(4);

true

Example 3:

> sin(pi/6) != 1/2 * sqrt(3);

true

Example 4:

> prec = 12;

The precision has been set to 12 bits.

> 16384.1 != 16385.1;

false

Example 5:

> error != error;

false

See also: == (8.47), > (8.69), >= (8.68), <= (8.87), < (8.96), in (8.80), ! (8.107), && (8.6), || (8.112),
error (8.50), prec (8.123)

119

8.106 nop

Name: nop
no operation
Usage:

nop : void → void
nop() : void → void

nop(n) : integer → void

Description:

• The command nop does nothing. This means it is an explicit parse element in the Sollya language
that finally does not produce any result or side-effect.

• The command nop may take an optional positive integer argument n. The argument controls how
much (useless) integer additions Sollya performs while doing nothing. With this behaviour, nop
can be used for calibration of timing tests.

• The keyword nop is implicit in some procedure definitions. Procedures without imperative body
get parsed as if they had an imperative body containing one nop statement.

Example 1:

> nop;

Example 2:

> nop(100);

Example 3:

> succ = proc(n) { return n + 1; };

> succ;

proc(n)

{

nop;

return (n) + (1);

}

> succ(5);

6

See also: proc (8.131), time (8.176)

8.107 !

Name: !
boolean NOT operator
Usage:

! expr : boolean → boolean

Parameters:

• expr represents a boolean expression

Description:

• ! evaluates to the boolean NOT of the boolean expression expr. ! expr evaluates to true iff expr
does not evaluate to true.

Example 1:

120

> ! false;

true

Example 2:

> ! (1 == exp(0));

false

See also: && (8.6), || (8.112)

8.108 numberroots

Name: numberroots
Computes the number of roots of a polynomial in a given range.
Usage:

numberroots(p, I) : (function, range) → integer

Parameters:

• p is a polynomial.

• I is an interval.

Description:

• numberroots rigorously computes the number of roots of polynomial the p in the interval I. The
technique used is Sturm’s algorithm. The value returned is not just a numerical estimation of the
number of roots of p in I: it is the exact number of roots.

• The command findzeros computes safe enclosures of all the zeros of a function, without forgetting
any, but it is not guaranteed to separate them all in distinct intervals. numberroots is more
accurate since it guarantees the exact number of roots. However, it does not compute them. It
may be used, for instance, to certify that findzeros did not put two distinct roots in the same
interval.

• Multiple roots are counted only once.

• The interval I must be bounded. The algorithm cannot handle unbounded intervals. Moreover,
the interval is considered as a closed interval: if one (or both) of the endpoints of I are roots of p,
they are counted.

• The argument p can be any expression, but if Sollya fails to prove that it is a polynomial an error
is produced. Also, please note that if the coefficients of p or the endpoints of I are not exactly
representable, they are first numerically evaluated, before the algorithm is used. In that case, the
counted number of roots corresponds to the rounded polynomial on the rounded interval and not
to the exact parameters given by the user. A warning is displayed to inform the user.

Example 1:

> numberroots(1+x-x^2, [1,2]);

1

> findzeros(1+x-x^2, [1,2]);

[|[1.617919921875;1.6180419921875]|]

Example 2:

> numberroots((1+x)*(1-x), [-1,1]);

2

> numberroots(x^2, [-1,1]);

1

121

Example 3:

> verbosity = 1!;

> numberroots(x-pi, [0,4]);

Warning: the 0th coefficient of the polynomial is neither a floating point

constant nor can be evaluated without rounding to a floating point constant.

Will faithfully evaluate it with the current precision (165 bits)

1

Example 4:

> verbosity = 1!;

> numberroots(1+x-x^2, [0, @Inf@]);

Warning: the given interval must have finite bounds.

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

> numberroots(exp(x), [0, 1]);

Warning: the given function must be a polynomial in this context.

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

See also: dirtyfindzeros (8.38), findzeros (8.61)

8.109 numerator

Name: numerator
gives the numerator of an expression
Usage:

numerator(expr) : function → function

Parameters:

• expr represents an expression

Description:

• If expr represents a fraction expr1 /expr2, numerator(expr) returns the numerator of this fraction,
i.e. expr1.

If expr represents something else, numerator(expr) returns the expression itself, i.e. expr.

Note that for all expressions expr, numerator(expr) / denominator(expr) is equal to expr.

Example 1:

> numerator(5/3);

5

Example 2:

> numerator(exp(x));

exp(x)

Example 3:

122

> a = 5/3;

> b = numerator(a)/denominator(a);

> print(a);

5 / 3

> print(b);

5 / 3

Example 4:

> a = exp(x/3);

> b = numerator(a)/denominator(a);

> print(a);

exp(x / 3)

> print(b);

exp(x / 3)

See also: denominator (8.34), rationalmode (8.138)

8.110 off

Name: off
special value for certain global variables.
Description:

• off is a special value used to deactivate certain functionnalities of Sollya.

• As any value it can be affected to a variable and stored in lists.

Example 1:

> canonical=on;

Canonical automatic printing output has been activated.

> p=1+x+x^2;

> mode=off;

> p;

1 + x + x^2

> canonical=mode;

Canonical automatic printing output has been deactivated.

> p;

1 + x * (1 + x)

See also: on (8.111), autosimplify (8.15), canonical (8.20), timing (8.177), fullparentheses (8.66),
midpointmode (8.100), rationalmode (8.138), roundingwarnings (8.152), timing (8.177), dieon-
errormode (8.36)

8.111 on

Name: on
special value for certain global variables.
Description:

• on is a special value used to activate certain functionnalities of Sollya.

• As any value it can be affected to a variable and stored in lists.

Example 1:

123

> p=1+x+x^2;

> mode=on;

> p;

1 + x * (1 + x)

> canonical=mode;

Canonical automatic printing output has been activated.

> p;

1 + x + x^2

See also: off (8.110), autosimplify (8.15), canonical (8.20), timing (8.177), fullparentheses (8.66),
midpointmode (8.100), rationalmode (8.138), roundingwarnings (8.152), timing (8.177), dieon-
errormode (8.36)

8.112 ||
Name: ||
boolean OR operator
Usage:

expr1 || expr2 : (boolean, boolean) → boolean

Parameters:

• expr1 and expr2 represent boolean expressions

Description:

• || evaluates to the boolean OR of the two boolean expressions expr1 and expr2. || evaluates to true
iff at least one of expr1 or expr2 evaluates to true.

Example 1:

> false || false;

false

Example 2:

> (1 == exp(0)) || (0 == log(1));

true

See also: && (8.6), ! (8.107)

8.113 parse

Name: parse
parses an expression contained in a string
Usage:

parse(string) : string → function | error

Parameters:

• string represents a character sequence

Description:

• parse(string) parses the character sequence string containing an expression built on constants and
base functions.

If the character sequence does not contain a well-defined expression, a warning is displayed indi-
cating a syntax error and parse returns a error of type error.

124

• The character sequence to be parsed by parse may contain commands that return expressions, in-
cluding parse itself. Those commands get executed after the string has been parsed. parse(string)
will return the expression computed by the commands contained in the character sequence string.

Example 1:

> parse("exp(x)");

exp(x)

Example 2:

> text = "remez(exp(x),5,[-1;1])";

> print("The string", text, "gives", parse(text));

The string remez(exp(x),5,[-1;1]) gives 1.00004475029055070643077052482053398765

426158966754 + x * (1.00003834652983970735244541124504033817544233075356 + x * (

0.49919698262882986492168824494240374771969012861297 + x * (0.166424656075155194

415920597322727380932279602909199 + x * (4.3793696387328047027125756620718349665

9575464236489e-2 + x * 8.7381910388065551140158420278330960479960476713376e-3)))

)

Example 3:

> verbosity = 1!;

> parse("5 + * 3");

Warning: syntax error, unexpected MULTOKEN. Will try to continue parsing (expect

ing ";"). May leak memory.

Warning: the string "5 + * 3" could not be parsed by the miniparser.

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

See also: execute (8.52), readfile (8.140), print (8.126), error (8.50), dieonerrormode (8.36)

8.114 perturb

Name: perturb
indicates random perturbation of sampling points for externalplot
Usage:

perturb : perturb

Description:

• The use of perturb in the command externalplot enables the addition of some random noise
around each sampling point in externalplot.

See externalplot for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");

> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l

mpfr");

> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.57), absolute (8.2), relative (8.142), bashexecute (8.17)

125

8.115 pi

Name: pi
the constant π.
Description:

• pi is the constant π, defined as half the period of sine and cosine.

• In Sollya, pi is considered a 0-ary function. This way, the constant is not evaluated at the time
of its definition but at the time of its use. For instance, when you define a constant or a function
relating to π, the current precision at the time of the definition does not matter. What is important
is the current precision when you evaluate the function or the constant value.

• Remark that when you define an interval, the bounds are first evaluated and then the interval is
defined. In this case, pi will be evaluated as any other constant value at the definition time of the
interval, thus using the current precision at this time.

Example 1:

> verbosity=1!; prec=12!;

> a = 2*pi;

> a;

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

6.283

> prec=20!;

> a;

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

6.283187

Example 2:

> display=binary;

Display mode is binary numbers.

> prec=12!;

> d = [pi; 5];

> d;

[1.1001001_2 * 2^(1);1.01_2 * 2^(2)]

> prec=20!;

> d;

[1.1001001_2 * 2^(1);1.01_2 * 2^(2)]

See also: cos (8.26), sin (8.159), tan (8.170), asin (8.10), acos (8.4), atan (8.12), evaluate (8.51),
prec (8.123), libraryconstant (8.90)

8.116 plot

Name: plot
plots one or several functions
Usage:

plot(f1, ... ,fn, I) : (function, ... ,function, range) → void
plot(f1, ... ,fn, I, file, name) : (function, ... ,function, range, file, string) → void

plot(f1, ... ,fn, I, postscript, name) : (function, ... ,function, range, postscript, string) → void
plot(f1, ... ,fn, I, postscriptfile, name) : (function, ... ,function, range, postscriptfile, string) → void

plot(L, I) : (list, range) → void
plot(L, I, file, name) : (list, range, file, string) → void

plot(L, I, postscript, name) : (list, range, postscript, string) → void
plot(L, I, postscriptfile, name) : (list, range, postscriptfile, string) → void

126

Parameters:

• f1, ..., fn are functions to be plotted.

• L is a list of functions to be plotted.

• I is the interval where the functions have to be plotted.

• name is a string representing the name of a file.

Description:

• This command plots one or several functions f1, ... ,fn on an interval I. Functions can be either
given as parameters of plot or as a list L which elements are functions. The functions are drawn
on the same plot with different colors.

• If L contains an element that is not a function (or a constant), an error occurs.

• plot relies on the value of global variable points. Let n be the value of this variable. The algorithm
is the following: each function is evaluated at n evenly distributed points in I. At each point, the
computed value is a faithful rounding of the exact value with a sufficiently high precision. Each
point is finally plotted. This should avoid numerical artefacts such as critical cancellations.

• You can save the function plot either as a data file or as a postscript file.

• If you use argument file with a string name, Sollya will save a data file called name.dat and
a gnuplot directives file called name.p. Invoking gnuplot on name.p will plot the data stored in
name.dat.

• If you use argument postscript with a string name, Sollya will save a postscript file called
name.eps representing your plot.

• If you use argument postscriptfile with a string name, Sollya will produce the corresponding
name.dat, name.p and name.eps.

• This command uses gnuplot to produce the final plot. If your terminal is not graphic (typically
if you use Sollya through ssh without -X) gnuplot should be able to detect that and produce an
ASCII-art version on the standard output. If it is not the case, you can either store the plot in a
postscript file to view it locally, or use asciiplot command.

• If every function is constant, plot will not plot them but just display their value.

• If the interval is reduced to a single point, plot will just display the value of the functions at this
point.

Example 1:

> plot(sin(x),0,cos(x),[-Pi,Pi]);

Example 2:

> plot(sin(x),0,cos(x),[-Pi,Pi],postscriptfile,"plotSinCos");

Example 3:

> plot(exp(0), sin(1), [0;1]);

1

0.84147098480789650665250232163029899962256306079837

Example 4:

> plot(sin(x), cos(x), [1;1]);

0.84147098480789650665250232163029899962256306079837

0.54030230586813971740093660744297660373231042061792

See also: externalplot (8.57), asciiplot (8.9), file (8.60), postscript (8.119), postscriptfile (8.120),
points (8.118)

127

8.117 +

Name: +
addition function
Usage:

function1 + function2 : (function, function) → function
interval1 + interval2 : (range, range) → range

interval1 + constant : (range, constant) → range
interval1 + constant : (constant, range) → range

Parameters:

• function1 and function2 represent functions

• interval1 and interval2 represent intervals (ranges)

• constant represents a constant or constant expression

Description:

• + represents the addition (function) on reals. The expression function1 + function2 stands for the
function composed of the addition function and the two functions function1 and function2.

• + can be used for interval arithmetic on intervals (ranges). + will evaluate to an interval that safely
encompasses all images of the addition function with arguments varying in the given intervals.
Any combination of intervals with intervals or constants (resp. constant expressions) is supported.
However, it is not possible to represent families of functions using an interval as one argument and
a function (varying in the free variable) as the other one.

Example 1:

> 1 + 2;

3

Example 2:

> x + 2;

2 + x

Example 3:

> x + x;

x * 2

Example 4:

> diff(sin(x) + exp(x));

cos(x) + exp(x)

Example 5:

> [1;2] + [3;4];

[4;6]

> [1;2] + 17;

[18;19]

> 13 + [-4;17];

[9;30]

See also: − (8.102), ∗ (8.103), / (8.42), ˆ (8.121)

128

8.118 points

Name: points
controls the number of points chosen by Sollya in certain commands.
Usage:

points = n : integer → void
points = n ! : integer → void

points : constant

Parameters:

• n represents the number of points

Description:

• points is a global variable. Its value represents the number of points used in numerical algorithms
of Sollya (namely dirtyinfnorm, dirtyintegral, dirtyfindzeros, plot).

Example 1:

> f=x^2*sin(1/x);

> points=10;

The number of points has been set to 10.

> dirtyfindzeros(f, [0;1]);

[|0, 0.318309886183790671537767526745028724068919291480918|]

> points=100;

The number of points has been set to 100.

> dirtyfindzeros(f, [0;1]);

[|0, 2.4485375860291590118289809749617594159147637806224e-2, 3.97887357729738339

422209408431285905086149114351147e-2, 4.5472840883398667362538218106432674866988

4702115589e-2, 5.3051647697298445256294587790838120678153215246819e-2, 6.3661977

236758134307553505349005744813783858296183e-2, 7.9577471545947667884441881686257

181017229822870229e-2, 0.106103295394596890512589175581676241356306430493638, 0.

159154943091895335768883763372514362034459645740459, 0.3183098861837906715377675

26745028724068919291480918|]

See also: dirtyinfnorm (8.39), dirtyintegral (8.40), dirtyfindzeros (8.38), plot (8.116), diam (8.35),
prec (8.123)

8.119 postscript

Name: postscript
special value for commands plot and externalplot
Description:

• postscript is a special value used in commands plot and externalplot to save the result of the
command in a postscript file.

• As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=postscript;

> name="plotSinCos";

> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.57), plot (8.116), file (8.60), postscriptfile (8.120)

129

8.120 postscriptfile

Name: postscriptfile
special value for commands plot and externalplot
Description:

• postscriptfile is a special value used in commands plot and externalplot to save the result of
the command in a data file and a postscript file.

• As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=postscriptfile;

> name="plotSinCos";

> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.57), plot (8.116), file (8.60), postscript (8.119)

8.121 ˆ

Name: ˆ
power function
Usage:

function1 ˆ function2 : (function, function) → function
interval1 ˆ interval2 : (range, range) → range

interval1 ˆ constant : (range, constant) → range
interval1 ˆ constant : (constant, range) → range

Parameters:

• function1 and function2 represent functions

• interval1 and interval2 represent intervals (ranges)

• constant represents a constant or constant expression

Description:

• ˆ represents the power (function) on reals. The expression function1 ˆ function2 stands for the
function composed of the power function and the two functions function1 and function2, where
function1 is the base and function2 the exponent. If function2 is a constant integer, ˆ is defined
on negative values of function1. Otherwise ˆ is defined as ey·ln x.

• Note that whenever several ˆ are composed, the priority goes to the last .̂ This corresponds to the
natural way of thinking when a tower of powers is written on a paper. Thus, 2^3^5 is read as 23

5

and is interpreted as 2(3
5).

• ˆ can be used for interval arithmetic on intervals (ranges). ˆ will evaluate to an interval that safely
encompasses all images of the power function with arguments varying in the given intervals. If the
intervals given contain points where the power function is not defined, infinities and NaNs will be
produced in the output interval. Any combination of intervals with intervals or constants (resp.
constant expressions) is supported. However, it is not possible to represent families of functions
using an interval as one argument and a function (varying in the free variable) as the other one.

Example 1:

> 5 ^ 2;

25

Example 2:

130

> x ^ 2;

x^2

Example 3:

> 3 ^ (-5);

4.1152263374485596707818930041152263374485596707818e-3

Example 4:

> (-3) ^ (-2.5);

@NaN@

Example 5:

> diff(sin(x) ^ exp(x));

sin(x)^exp(x) * ((cos(x) * exp(x)) / sin(x) + exp(x) * log(sin(x)))

Example 6:

> 2^3^5;

1.4134776518227074636666380005943348126619871175005e73

> (2^3)^5;

32768

> 2^(3^5);

1.4134776518227074636666380005943348126619871175005e73

Example 7:

> [1;2] ^ [3;4];

[1;1.6007e1]

> [1;2] ^ 17;

[1;131072]

> 13 ^ [-4;17];

[3.501277966457757081334687160813696999404782745702e-5;8650415919381337933]

See also: + (8.117), − (8.102), ∗ (8.103), / (8.42)

8.122 powers

Name: powers
special value for global state display
Description:

• powers is a special value used for the global state display. If the global state display is equal
to powers, all data will be output in dyadic notation with numbers displayed in a Maple and
PARI/GP compatible format.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.31), dyadic (8.46), hexadecimal (8.73), binary (8.18), display (8.41)

8.123 prec

Name: prec
controls the precision used in numerical computations.
Description:

• prec is a global variable. Its value represents the precision of the floating-point format used in
numerical computations.

131

• Many commands try to adapt their working precision in order to have approximately n correct bits
in output, where n is the value of prec.

Example 1:

> display=binary!;

> prec=50;

The precision has been set to 50 bits.

> dirtyinfnorm(exp(x),[1;2]);

1.110110001110011001001011100011010100110111011011_2 * 2^(2)

> prec=100;

The precision has been set to 100 bits.

> dirtyinfnorm(exp(x),[1;2]);

1.110110001110011001001011100011010100110111011010110111001100001100111010001110

11101000100000011011_2 * 2^(2)

See also: evaluate (8.51), diam (8.35)

8.124 precision

Name: precision
returns the precision necessary to represent a number.
Usage:

precision(x) : constant → integer

Parameters:

• x is a dyadic number.

Description:

• precision(x) is by definition |x| if x equals 0, NaN, or Inf.

• If x is not zero, it can be uniquely written as x = m · 2e where m is an odd integer and e is an
integer. precision(x) returns the number of bits necessary to write m in binary (i.e. dlog2(m)e).

Example 1:

> a=round(Pi,20,RN);

> precision(a);

19

> m=mantissa(a);

> ceil(log2(m));

19

See also: mantissa (8.97), exponent (8.56), round (8.149)

8.125 .:

Name: .:
add an element at the beginning of a list.
Usage:

x .:L : (any type, list) → list

Parameters:

• x is an object of any type.

• L is a list (possibly empty).

132

Description:

• .: adds the element x at the beginning of the list L.

• Note that since x may be of any type, it can be in particular a list.

Example 1:

> 1.:[|2,3,4|];

[|1, 2, 3, 4|]

Example 2:

> [|1,2,3|].:[|4,5,6|];

[|[|1, 2, 3|], 4, 5, 6|]

Example 3:

> 1.:[||];

[|1|]

See also: :. (8.7), @ (8.24)

8.126 print

Name: print
prints an expression
Usage:

print(expr1,...,exprn) : (any type,..., any type) → void
print(expr1,...,exprn) > filename : (any type,..., any type, string) → void
print(expr1,...,exprn) >> filename : (any type,...,any type, string) → void

Parameters:

• expr represents an expression

• filename represents a character sequence indicating a file name

Description:

• print(expr1,...,exprn) prints the expressions expr1 through exprn separated by spaces and followed
by a newline.

If a second argument filename is given after a single ”>”, the displaying is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double ”>>” is given, the output will be appended to the file filename.

The global variables display, midpointmode and fullparentheses have some influence on the
formatting of the output (see display, midpointmode and fullparentheses).

Remark that if one of the expressions expri given in argument is of type string, the character
sequence expri evaluates to is displayed. However, if expri is of type list and this list contains
a variable of type string, the expression for the list is displayed, i.e. all character sequences get
displayed surrounded by double quotes (”). Nevertheless, escape sequences used upon defining
character sequences are interpreted immediately.

Example 1:

> print(x + 2 + exp(sin(x)));

x + 2 + exp(sin(x))

> print("Hello","world");

Hello world

> print("Hello","you", 4 + 3, "other persons.");

Hello you 7 other persons.

133

Example 2:

> print("Hello");

Hello

> print([|"Hello"|]);

[|"Hello"|]

> s = "Hello";

> print(s,[|s|]);

Hello [|"Hello"|]

> t = "Hello\tyou";

> print(t,[|t|]);

Hello you [|"Hello\tyou"|]

Example 3:

> print(x + 2 + exp(sin(x))) > "foo.sol";

> readfile("foo.sol");

x + 2 + exp(sin(x))

Example 4:

> print(x + 2 + exp(sin(x))) >> "foo.sol";

Example 5:

134

> display = decimal;

Display mode is decimal numbers.

> a = evaluate(sin(pi * x), 0.25);

> b = evaluate(sin(pi * x), [0.25; 0.25 + 1b-50]);

> print(a);

0.70710678118654752440084436210484903928483593768847

> display = binary;

Display mode is binary numbers.

> print(a);

1.011010100000100111100110011001111111001110111100110010010000100010110010111110

11000100110110011011101010100101010111110100111110001110101101111011000001011101

010001_2 * 2^(-1)

> display = hexadecimal;

Display mode is hexadecimal numbers.

> print(a);

0xb.504f333f9de6484597d89b3754abe9f1d6f60ba88p-4

> display = dyadic;

Display mode is dyadic numbers.

> print(a);

33070006991101558613323983488220944360067107133265b-165

> display = powers;

Display mode is dyadic numbers in integer-power-of-2 notation.

> print(a);

33070006991101558613323983488220944360067107133265 * 2^(-165)

> display = decimal;

Display mode is decimal numbers.

> midpointmode = off;

Midpoint mode has been deactivated.

> print(b);

[0.70710678118654752440084436210484903928483593768844;0.707106781186549497437217

82517557347782646274417048]

> midpointmode = on;

Midpoint mode has been activated.

> print(b);

0.7071067811865~4/5~

> display = dyadic;

Display mode is dyadic numbers.

> print(b);

[2066875436943847413332748968013809022504194195829b-161;165350034955508254441962

37019385936414432675156571b-164]

> display = decimal;

Display mode is decimal numbers.

> autosimplify = off;

Automatic pure tree simplification has been deactivated.

> fullparentheses = off;

Full parentheses mode has been deactivated.

> print(x + x * ((x + 1) + 1));

x + x * (x + 1 + 1)

> fullparentheses = on;

Full parentheses mode has been activated.

> print(x + x * ((x + 1) + 1));

x + (x * ((x + 1) + 1))

See also: write (8.184), printexpansion (8.128), printdouble (8.127), printsingle (8.129), printxml
(8.130), readfile (8.140), autosimplify (8.15), display (8.41), midpointmode (8.100), fullparenthe-
ses (8.66), evaluate (8.51), rationalmode (8.138)

135

8.127 printdouble

Name: printdouble
prints a constant value as a hexadecimal double precision number
Usage:

printdouble(constant) : constant → void

Parameters:

• constant represents a constant

Description:

• Prints a constant value as a hexadecimal number on 16 hexadecimal digits. The hexadecimal
number represents the integer equivalent to the 64 bit memory representation of the constant
considered as a double precision number.

If the constant value does not hold on a double precision number, it is first rounded to the nearest
double precision number before displayed. A warning is displayed in this case.

Example 1:

> printdouble(3);

0x4008000000000000

Example 2:

> prec=100!;

> verbosity = 1!;

> printdouble(exp(5));

Warning: the given expression is not a constant but an expression to evaluate. A

faithful evaluation will be used.

Warning: rounding down occurred before printing a value as a double.

0x40628d389970338f

See also: printsingle (8.129), printexpansion (8.128), double (8.43)

8.128 printexpansion

Name: printexpansion
prints a polynomial in Horner form with its coefficients written as a expansions of double precision
numbers
Usage:

printexpansion(polynomial) : function → void

Parameters:

• polynomial represents the polynomial to be printed

Description:

• The command printexpansion prints the polynomial polynomial in Horner form writing its coef-
ficients as expansions of double precision numbers. The double precision numbers themselves are
displayed in hexadecimal memory notation (see printdouble).

If some of the coefficients of the polynomial polynomial are not floating-point constants but constant
expressions, they are evaluated to floating-point constants using the global precision prec. If a
rounding occurs in this evaluation, a warning is displayed.

If the exponent range of double precision is not sufficient to display all the mantissa bits of a
coefficient, the coefficient is displayed rounded and a warning is displayed.

If the argument polynomial does not a polynomial, nothing but a warning or a newline is displayed.
Constants can be displayed using printexpansion since they are polynomials of degree 0.

136

Example 1:

> printexpansion(roundcoefficients(taylor(exp(x),5,0),[|DD...|]));

0x3ff0000000000000 + x * (0x3ff0000000000000 + x * (0x3fe0000000000000 + x * ((0

x3fc5555555555555 + 0x3c65555555555555) + x * ((0x3fa5555555555555 + 0x3c4555555

5555555) + x * (0x3f81111111111111 + 0x3c01111111111111)))))

Example 2:

> printexpansion(remez(exp(x),5,[-1;1]));

(0x3ff0002eec908ce9 + 0xbc7df99eb225af5b + 0xb8d55834b08b1f18) + x * ((0x3ff0002

835917719 + 0x3c6d82c073b25ebf + 0xb902cf062b54b7b6 + 0x35b0000000000000) + x *

((0x3fdff2d7e6a9c5e9 + 0xbc7b09a95b0d520f + 0xb915b639add55731 + 0x35a8000000000

000) + x * ((0x3fc54d67338ba09f + 0x3c4867596d0631cf + 0xb8ef0756bdb4af6e) + x *

((0x3fa66c209b825167 + 0x3c45ec5b6655b076 + 0xb8d8c125286400bc) + x * (0x3f81e5

5425e72ab4 + 0x3c263b25a1bf597b + 0xb8c843e0401dadd0 + 0x3540000000000000)))))

Example 3:

> verbosity = 1!;

> prec = 3500!;

> printexpansion(pi);

(0x400921fb54442d18 + 0x3ca1a62633145c07 + 0xb92f1976b7ed8fbc + 0x35c4cf98e80417

7d + 0x32631d89cd9128a5 + 0x2ec0f31c6809bbdf + 0x2b5519b3cd3a431b + 0x27e8158536

f92f8a + 0x246ba7f09ab6b6a9 + 0xa0eedd0dbd2544cf + 0x1d779fb1bd1310ba + 0x1a1a63

7ed6b0bff6 + 0x96aa485fca40908e + 0x933e501295d98169 + 0x8fd160dbee83b4e0 + 0x8c

59b6d799ae131c + 0x08f6cf70801f2e28 + 0x05963bf0598da483 + 0x023871574e69a459 +

0x8000000005702db3 + 0x8000000000000000)

Warning: the expansion is not complete because of the limited exponent range of

double precision.

Warning: rounding occurred while printing.

See also: printdouble (8.127), horner (8.76), print (8.126), prec (8.123), remez (8.143), taylor
(8.172), roundcoefficients (8.150), fpminimax (8.65), implementpoly (8.79)

8.129 printsingle

Name: printsingle
prints a constant value as a hexadecimal single precision number
Usage:

printsingle(constant) : constant → void

Parameters:

• constant represents a constant

Description:

• Prints a constant value as a hexadecimal number on 8 hexadecimal digits. The hexadecimal number
represents the integer equivalent to the 32 bit memory representation of the constant considered
as a single precision number.

If the constant value does not hold on a single precision number, it is first rounded to the nearest
single precision number before it is displayed. A warning is displayed in this case.

Example 1:

> printsingle(3);

0x40400000

137

Example 2:

> prec=100!;

> verbosity = 1!;

> printsingle(exp(5));

Warning: the given expression is not a constant but an expression to evaluate. A

faithful evaluation will be used.

Warning: rounding down occurred before printing a value as a simple.

0x431469c5

See also: printdouble (8.127), single (8.160)

8.130 printxml

Name: printxml
prints an expression as an MathML-Content-Tree
Usage:

printxml(expr) : function → void
printxml(expr) > filename : (function, string) → void

printxml(expr) > > filename : (function, string) → void

Parameters:

• expr represents a functional expression

• filename represents a character sequence indicating a file name

Description:

• printxml(expr) prints the functional expression expr as a tree of MathML Content Definition
Markups. This XML tree can be re-read in external tools or by usage of the readxml command.

If a second argument filename is given after a single >, the MathML tree is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double > > is given, the output will be appended to the file filename.

Example 1:

138

> printxml(x + 2 + exp(sin(x)));

<?xml version="1.0" encoding="UTF-8"?>

<!-- generated by sollya: http://sollya.gforge.inria.fr/ -->

<!-- syntax: printxml(...); example: printxml(x^2-2*x+5); -->

<?xml-stylesheet type="text/xsl" href="http://sollya.gforge.inria.fr/mathmlc2p-w

eb.xsl"?>

<?xml-stylesheet type="text/xsl" href="mathmlc2p-web.xsl"?>

<!-- This stylesheet allows direct web browsing of MathML-c XML files (http:// o

r file://) -->

<math xmlns="http://www.w3.org/1998/Math/MathML">

<semantics>

<annotation-xml encoding="MathML-Content">

<lambda>

<bvar><ci> x </ci></bvar>

<apply>

<apply>

<plus/>

<apply>

<plus/>

<ci> x </ci>

<cn type="integer" base="10"> 2 </cn>

</apply>

<apply>

<exp/>

<apply>

<sin/>

<ci> x </ci>

</apply>

</apply>

</apply>

</apply>

</lambda>

</annotation-xml>

<annotation encoding="sollya/text">(x + 1b1) + exp(sin(x))</annotation>

</semantics>

</math>

Example 2:

> printxml(x + 2 + exp(sin(x))) > "foo.xml";

Example 3:

> printxml(x + 2 + exp(sin(x))) >> "foo.xml";

See also: readxml (8.141), print (8.126), write (8.184)

8.131 proc

Name: proc
defines a Sollya procedure
Usage:

139

proc(formal parameter1, formal parameter2,..., formal parameter n) { procedure body } : void →
procedure

proc(formal parameter1, formal parameter2,..., formal parameter n) { procedure body return
expression; } : void → procedure

proc(formal list parameter = ...) { procedure body } : void → procedure
proc(formal list parameter = ...) { procedure body return expression; } : void → procedure

Parameters:

• formal parameter1, formal parameter2 through formal parameter n represent identifiers used as
formal parameters

• formal list parameter represents an identifier used as a formal parameter for the list of an arbitrary
number of parameters

• procedure body represents the imperative statements in the body of the procedure

• expression represents the expression proc shall evaluate to

Description:

• The proc keyword allows for defining procedures in the Sollya language. These procedures are
common Sollya objects that can be applied to actual parameters after definition. Upon such an
application, the Sollya interpreter applies the actual parameters to the formal parameters formal
parameter1 through formal parameter n (resp. builds up the list of arguments and applies it to
the list formal list parameter) and executes the procedure body. The procedure applied to actual
parameters evaluates then to the expression expression in the return statement after the procedure
body or to void, if no return statement is given (i.e. a return void statement is implicitly given).

• Sollya procedures defined by proc have no name. They can be bound to an identifier by assign-
ing the procedure object a proc expression produces to an identifier. However, it is possible to
use procedures without giving them any name. For instance, Sollya procedures, i.e. procedure
objects, can be elements of lists. They can even be given as an argument to other internal Sollya
procedures. See also procedure on this subject.

• Upon definition of a Sollya procedure using proc, no type check is performed. More precisely,
the statements in procedure body are merely parsed but not interpreted upon procedure definition
with proc. Type checks are performed once the procedure is applied to actual parameters or to
void. At this time, if the procedure was defined using several different formal parameters formal
parameter 1 through formal parameter n, it is checked whether the number of actual parameters
corresponds to the number of formal parameters. If the procedure was defined using the syntax for
a procedure with an arbitrary number of parameters by giving a formal list parameter, the number
of actual arguments is not checked but only a list ¡formal list parameter¿ of appropriate length is
built up. Type checks are further performed upon execution of each statement in procedure body
and upon evaluation of the expression expression to be returned.

Procedures defined by proc containing a quit or restart command cannot be executed (i.e. ap-
plied). Upon application of a procedure, the Sollya interpreter checks beforehand for such a
statement. If one is found, the application of the procedure to its arguments evaluates to error.
A warning is displayed. Remark that in contrast to other type or semantic correctness checks, this
check is really performed before interpreting any other statement in the body of the procedure.

• Through the var keyword it is possible to declare local variables and thus to have full support
of recursive procedures. This means a procedure defined using proc may contain in its procedure
body an application of itself to some actual parameters: it suffices to assign the procedure (object)
to an identifier with an appropriate name.

• Sollya procedures defined using proc may return other procedures. Further procedure body may
contain assignments of locally defined procedure objects to identifiers. See var for the particular
behaviour of local and global variables.

140

• The expression expression returned by a procedure is evaluated with regard to Sollya commands,
procedures and external procedures. Simplification may be performed. However, an application of
a procedure defined by proc to actual parameters evaluates to the expression expression that may
contain the free global variable or that may be composed.

Example 1:

> succ = proc(n) { return n + 1; };

> succ(5);

6

> 3 + succ(0);

4

> succ;

proc(n)

{

nop;

return (n) + (1);

}

Example 2:

> add = proc(m,n) { var res; res := m + n; return res; };

> add(5,6);

11

> add;

proc(m, n)

{

var res;

res := (m) + (n);

return res;

}

> verbosity = 1!;

> add(3);

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

> add(true,false);

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

Warning: the given expression or command could not be handled.

error

Example 3:

> succ = proc(n) { return n + 1; };

> succ(5);

6

> succ(x);

1 + x

Example 4:

141

> hey = proc() { print("Hello world."); };

> hey();

Hello world.

> print(hey());

Hello world.

void

> hey;

proc()

{

print("Hello world.");

return void;

}

Example 5:

> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);

return res; };

> fac(5);

120

> fac(11);

39916800

> fac;

proc(n)

{

var res;

if (n) == (0) then

res := 1

else

res := (n) * (fac((n) - (1)));

return res;

}

Example 6:

> myprocs = [| proc(m,n) { return m + n; }, proc(m,n) { return m - n; } |];

> (myprocs[0])(5,6);

11

> (myprocs[1])(5,6);

-1

> succ = proc(n) { return n + 1; };

> pred = proc(n) { return n - 1; };

> applier = proc(p,n) { return p(n); };

> applier(succ,5);

6

> applier(pred,5);

4

Example 7:

142

> verbosity = 1!;

> myquit = proc(n) { print(n); quit; };

> myquit;

proc(n)

{

print(n);

quit;

return void;

}

> myquit(5);

Warning: a quit or restart command may not be part of a procedure body.

The procedure will not be executed.

Warning: an error occurred while executing a procedure.

Warning: the given expression or command could not be handled.

error

Example 8:

> printsucc = proc(n) { var succ; succ = proc(n) { return n + 1; }; print("Succe

ssor of",n,"is",succ(n)); };

> printsucc(5);

Successor of 5 is 6

Example 9:

> makeadd = proc(n) { var add; print("n =",n); add = proc(m,n) { return n + m; }

; return add; };

> makeadd(4);

n = 4

proc(m, n)

{

nop;

return (n) + (m);

}

> (makeadd(4))(5,6);

n = 4

11

Example 10:

143

> sumall = proc(L = ...) { var acc, i; acc = 0; for i in L do acc = acc + i; ret

urn acc; };

> sumall;

proc(L = ...)

{

var acc, i;

acc = 0;

for i in L do

acc = (acc) + (i);

return acc;

}

> sumall();

0

> sumall(2);

2

> sumall(2,5);

7

> sumall(2,5,7,9,16);

39

> sumall @ [|1,...,10|];

55

See also: return (8.146), externalproc (8.58), void (8.182), quit (8.135), restart (8.145), var (8.180),
@ (8.24), error (8.50)

8.132 procedure

Name: procedure
defines and assigns a Sollya procedure
Usage:

procedure identifier(formal parameter1, formal parameter2,..., formal parameter n) { procedure body }
: void → void

procedure identifier(formal parameter1, formal parameter2,..., formal parameter n) { procedure body
return expression; } : void → void

procedure identifier(formal list parameter = ...) { procedure body } : void → void
procedure identifier(formal list parameter = ...) { procedure body return expression; } : void → void

Parameters:

• identifier represents the name of the procedure to be defined and assigned

• formal parameter1, formal parameter2 through formal parameter n represent identifiers used as
formal parameters

• formal list parameter represents an identifier used as a formal parameter for the list of an arbitrary
number of parameters

• procedure body represents the imperative statements in the body of the procedure

• expression represents the expression procedure shall evaluate to

Description:

• The procedure keyword allows for defining and assigning procedures in the Sollya language. It is
an abbreviation to a procedure definition using proc with the same formal parameters, procedure
body and return-expression followed by an assignment of the procedure (object) to the identifier
identifier. In particular, all rules concerning local variables declared using the var keyword apply
for procedure.

144

Example 1:

> procedure succ(n) { return n + 1; };

> succ(5);

6

> 3 + succ(0);

4

> succ;

proc(n)

{

nop;

return (n) + (1);

}

Example 2:

> procedure myprint(L = ...) { var i; for i in L do i; };

> myprint("Lyon","Nancy","Beaverton","Coye-la-Foret","Amberg","Nizhny Novgorod",

"Cluj-Napoca");

Lyon

Nancy

Beaverton

Coye-la-Foret

Amberg

Nizhny Novgorod

Cluj-Napoca

See also: proc (8.131), var (8.180)

8.133 QD

Name: QD
short form for quad
See also: quad (8.134)

8.134 quad

Names: quad, QD
rounding to the nearest IEEE 754 quad (binary128).
Description:

• quad is both a function and a constant.

• As a function, it rounds its argument to the nearest IEEE 754 quad precision (i.e. IEEE754-2008
binary128) number. Subnormal numbers are supported as well as standard numbers: it is the real
rounding described in the standard.

• As a constant, it symbolizes the quad precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands round and roundcoefficients. It is not supported for
implementpoly. See the corresponding help pages for examples.

Example 1:

145

> display=binary!;

> QD(0.1);

1.100110011001100110011001100110011001100110011001100110011001100110011001100110

011001100110011001100110011001101_2 * 2^(-4)

> QD(4.17);

1.000010101110000101000111101011100001010001111010111000010100011110101110000101

000111101011100001010001111010111_2 * 2^(2)

> QD(1.011_2 * 2^(-16493));

1.1_2 * 2^(-16493)

See also: halfprecision (8.71), single (8.160), double (8.43), doubleextended (8.45), doubledouble
(8.44), tripledouble (8.178), roundcoefficients (8.150), implementpoly (8.79), fpminimax (8.65),
round (8.149), printsingle (8.129)

8.135 quit

Name: quit
quits Sollya

Usage:

quit : void → void

Description:

• The command quit, when executed, stops the execution of a Sollya script and leaves the Sollya

interpreter unless the quit command is executed in a Sollya script read into a main Sollya script
by execute or #include.

Upon exiting the Sollya interpreter, all state is thrown away, all memory is deallocated, all bound
libraries are unbound and the temporary files produced by plot and externalplot are deleted.

If the quit command does not lead to a halt of the Sollya interpreter, a warning is displayed.

Example 1:

> quit;

See also: restart (8.145), execute (8.52), plot (8.116), externalplot (8.57), return (8.146)

8.136 range

Name: range
keyword representing a range type
Usage:

range : type type

Description:

• range represents the range type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like range cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.58), boolean (8.19), constant (8.25), function (8.67), integer (8.83), list
of (8.91), string (8.164)

146

8.137 rationalapprox

Name: rationalapprox
returns a fraction close to a given number.
Usage:

rationalapprox(x,n) : (constant, integer) → function

Parameters:

• x is a number to approximate.

• n is a integer (representing a format).

Description:

• rationalapprox(x,n) returns a constant function of the form a/b where a and b are integers.
The value a/b is an approximation of x. The quality of this approximation is determined by the
parameter n that indicates the number of correct bits that a/b should have.

• The command is not safe in the sense that it is not ensured that the error between a/b and x is
less than 2−n.

• The following algorithm is used: x is first rounded downwards and upwards to a format of n bits,
thus obtaining an interval [xl, xu]. This interval is then developped into a continued fraction as
far as the representation is the same for every elements of [xl, xu]. The corresponding fraction is
returned.

• Since rational numbers are not a primitive object of Sollya, the fraction is returned as a constant
function. This can be quite amazing, because Sollya immediately simplifies a constant function
by evaluating it when the constant has to be displayed. To avoid this, you can use print (that
displays the expression representing the constant and not the constant itself) or the commands
numerator and denominator.

Example 1:

> pi10 = rationalapprox(Pi,10);

> pi50 = rationalapprox(Pi,50);

> pi100 = rationalapprox(Pi,100);

> print(pi10, ": ", simplify(floor(-log2(abs(pi10-Pi)/Pi))), "bits.");

22 / 7 : 11 bits.

> print(pi50, ": ", simplify(floor(-log2(abs(pi50-Pi)/Pi))), "bits.");

90982559 / 28960648 : 50 bits.

> print(pi100, ": ", simplify(floor(-log2(abs(pi100-Pi)/Pi))), "bits.");

4850225745369133 / 1543874804974140 : 101 bits.

Example 2:

> a=0.1;

> b=rationalapprox(a,4);

> numerator(b); denominator(b);

1

10

> print(simplify(floor(-log2(abs((b-a)/a)))), "bits.");

166 bits.

See also: print (8.126), numerator (8.109), denominator (8.34), rationalmode (8.138)

147

8.138 rationalmode

Name: rationalmode
global variable controlling if rational arithmetic is used or not.
Usage:

rationalmode = activation value : on|off → void
rationalmode = activation value ! : on|off → void

rationalmode : on|off

Parameters:

• activation value controls if rational arithmetic should be used or not

Description:

• rationalmode is a global variable. When its value is off, which is the default, Sollya will
not use rational arithmetic to simplify expressions. All computations, including the evaluation
of constant expressions given on the Sollya prompt, will be performed using floating-point and
interval arithmetic. Constant expressions will be approximated by floating-point numbers, which
are in most cases faithful roundings of the expressions, when shown at the prompt.

• When the value of the global variable rationalmode is on, Sollya will use rational arithmetic
when simplifying expressions. Constant expressions, given at the Sollya prompt, will be simplified
to rational numbers and displayed as such when they are in the set of the rational numbers. Other-
wise, flaoting-point and interval arithmetic will be used to compute a floating-point approximation,
which is in most cases a faithful rounding of the constant expression.

Example 1:

> rationalmode=off!;

> 19/17 + 3/94;

1.1495619524405506883604505632040050062578222778473

> rationalmode=on!;

> 19/17 + 3/94;

1837 / 1598

Example 2:

> rationalmode=off!;

> exp(19/17 + 3/94);

3.15680977395514136754709208944824276340328162814418

> rationalmode=on!;

> exp(19/17 + 3/94);

3.15680977395514136754709208944824276340328162814418

See also: on (8.111), off (8.110), numerator (8.109), denominator (8.34), simplifysafe (8.158),
rationalapprox (8.137), autosimplify (8.15)

8.139 RD

Name: RD
constant representing rounding-downwards mode.
Description:

• RD is used in command round to specify that the value x must be rounded to the greatest
floating-point number y such that y ≤ x.

Example 1:

> display=binary!;

> round(Pi,20,RD);

1.1001001000011111101_2 * 2^(1)

See also: RZ (8.154), RU (8.153), RN (8.148), round (8.149), floor (8.64)

148

8.140 readfile

Name: readfile
reads the content of a file into a string variable
Usage:

readfile(filename) : string → string

Parameters:

• filename represents a character sequence indicating a file name

Description:

• readfile opens the file indicated by filename, reads it and puts its contents in a character sequence
of type string that is returned.

If the file indicated by filename cannot be opened for reading, a warning is displayed and readfile
evaluates to an error variable of type error.

Example 1:

> print("Hello world") > "myfile.txt";

> t = readfile("myfile.txt");

> t;

Hello world

Example 2:

> verbosity=1!;

> readfile("afile.txt");

Warning: the file "afile.txt" could not be opened for reading.

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

See also: parse (8.113), execute (8.52), write (8.184), print (8.126), bashexecute (8.17), error
(8.50)

8.141 readxml

Name: readxml
reads an expression written as a MathML-Content-Tree in a file
Usage:

readxml(filename) : string → function | error

Parameters:

• filename represents a character sequence indicating a file name

Description:

• readxml(filename) reads the first occurrence of a lambda application with one bounded variable on
applications of the supported basic functions in file filename and returns it as a Sollya functional
expression.

If the file filename does not contain a valid MathML-Content tree, readxml tries to find an ”an-
notation encoding” markup of type ”sollya/text”. If this annotation contains a character sequence
that can be parsed by parse, readxml returns that expression. Otherwise readxml displays a
warning and returns an error variable of type error.

149

Example 1:

> readxml("readxmlexample.xml");

2 + x + exp(sin(x))

See also: printxml (8.130), readfile (8.140), parse (8.113), error (8.50)

8.142 relative

Name: relative
indicates a relative error for externalplot, fpminimax or supnorm
Usage:

relative : absolute|relative

Description:

• The use of relative in the command externalplot indicates that during plotting in externalplot
a relative error is to be considered.

See externalplot for details.

• Used with fpminimax, relative indicates that fpminimax must try to minimize the relative
error.

See fpminimax for details.

• When given in argument to supnorm, relative indicates that a relative error is to be considered
for supremum norm computation.

See supnorm for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");

> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l

mpfr");

> externalplot("./externalplotexample",absolute,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.57), fpminimax (8.65), absolute (8.2), bashexecute (8.17), supnorm
(8.168)

8.143 remez

Name: remez
computes the minimax of a function on an interval.
Usage:

remez(f, n, range, w, quality) : (function, integer, range, function, constant) → function
remez(f, L, range, w, quality) : (function, list, range, function, constant) → function

Parameters:

• f is the function to be approximated

• n is the degree of the polynomial that must approximate f

• L is a list of monomials that can be used to represent the polynomial that must approximate f

• range is the interval where the function must be approximated

• w (optional) is a weight function. Default is 1.

150

• quality (optional) is a parameter that controls the quality of the returned polynomial p, with respect
to the exact minimax p?. Default is 1e-5.

Description:

• remez computes an approximation of the function f with respect to the weight function w on
the interval range. More precisely, it searches a polynomial p such that ‖pw − f‖∞ is (almost)
minimal among all polynomials p of a certain form. The norm is the infinity norm, e.g. ‖g‖∞ =
max{|g(x)|, x ∈ range}.

• If w = 1 (the default case), it consists in searching the best polynomial approximation of f with
respect to the absolute error. If f = 1 and w is of the form 1/g, it consists in searching the best
polynomial approximation of g with respect to the relative error.

• If n is given, the polynomial p is searched among the polynomials with degree not greater than
n. If L is given, the polynomial p is searched as a linear combination of monomials Xk where k
belongs to L. L may contain ellipses but cannot be end-elliptic.

• The polynomial is obtained by a convergent iteration called Remez’ algorithm. The algorithm
computes a sequence p1, . . . , pk, . . . such that ek = ‖pkw − f‖∞ converges towards the optimal
value e. The algorithm is stopped when the relative error between ek and e is less than quality.

• Note: the algorithm may not converge in certain cases. Moreover, it may converge towards a
polynomial that is not optimal. These cases correspond to the cases when the Haar condition is
not fulfilled. See [Cheney - Approximation theory] for details.

Example 1:

> p = remez(exp(x),5,[0;1]);

> degree(p);

5

> dirtyinfnorm(p-exp(x),[0;1]);

1.12956984638214536849843017679626063762687501534126e-6

Example 2:

> p = remez(1,[|0,2,4,6,8|],[0,Pi/4],1/cos(x));

> canonical=on!;

> p;

0.99999999994393749280444571988532724907643631727381 + -0.4999999957155746773720

4931630836834563663039748203 * x^2 + 4.16666132335010905188253972212748718651775

241902969e-2 * x^4 + -1.38865291475286141707180658383176799662601691348739e-3 *

x^6 + 2.437267919111162694221738667927916761689966804242e-5 * x^8

Example 3:

> p1 = remez(exp(x),5,[0;1],default,1e-5);

> p2 = remez(exp(x),5,[0;1],default,1e-10);

> p3 = remez(exp(x),5,[0;1],default,1e-15);

> dirtyinfnorm(p1-exp(x),[0;1]);

1.12956984638214536849843017679626063762687501534126e-6

> dirtyinfnorm(p2-exp(x),[0;1]);

1.12956980227478687332174207517728389861926659249056e-6

> dirtyinfnorm(p3-exp(x),[0;1]);

1.12956980227478687332174207517728389861926659249056e-6

See also: dirtyinfnorm (8.39), infnorm (8.82), fpminimax (8.65), guessdegree (8.70), taylorform
(8.173), taylor (8.172)

151

8.144 rename

Name: rename
rename the free variable.
Usage:

rename(ident1,ident2) : void

Parameters:

• ident1 is the current name of the free variable.

• ident2 is a fresh name.

Description:

• rename permits a change of the name of the free variable. Sollya can handle only one free variable
at a time. The first time in a session that an unbound name is used in a context where it can be
interpreted as a free variable, the name is used to represent the free variable of Sollya. In the
following, this name can be changed using rename.

• Be careful: if ident2 has been set before, its value will be lost. Use the command isbound to know
if ident2 is already used or not.

• If ident1 is not the current name of the free variable, an error occurs.

• If rename is used at a time when the name of the free variable has not been defined, ident1 is
just ignored and the name of the free variable is set to ident2.

Example 1:

> f=sin(x);

> f;

sin(x)

> rename(x,y);

> f;

sin(y)

Example 2:

> a=1;

> f=sin(x);

> rename(x,a);

> a;

a

> f;

sin(a)

Example 3:

> verbosity=1!;

> f=sin(x);

> rename(y,z);

Warning: the current free variable is named "x" and not "y". Can only rename the

free variable.

The last command will have no effect.

Example 4:

152

> rename(x,y);

> isbound(x);

false

> isbound(y);

true

See also: isbound (8.85)

8.145 restart

Name: restart
brings Sollya back to its initial state
Usage:

restart : void → void

Description:

• The command restart brings Sollya back to its initial state. All current state is abandoned, all
libraries unbound and all memory freed.

The restart command has no effect when executed inside a Sollya script read into a main Sollya

script using execute. It is executed in a Sollya script included by a #include macro.

Using the restart command in nested elements of imperative programming like for or while loops
is possible. Since in most cases abandoning the current state of Sollya means altering a loop
invariant, warnings for the impossibility of continuing a loop may follow unless the state is rebuilt.

Example 1:

> print(exp(x));

exp(x)

> a = 3;

> restart;

The tool has been restarted.

> print(x);

x

> a;

Warning: the identifier "a" is neither assigned to, nor bound to a library funct

ion nor external procedure, nor equal to the current free variable.

Will interpret "a" as "x".

x

Example 2:

> print(exp(x));

exp(x)

> for i from 1 to 10 do {

print(i);

if (i == 5) then restart;

};

1

2

3

4

5

The tool has been restarted.

Warning: the tool has been restarted inside a for loop.

The for loop will no longer be executed.

153

Example 3:

> print(exp(x));

exp(x)

> a = 3;

> for i from 1 to 10 do {

print(i);

if (i == 5) then {

restart;

i = 7;

};

};

1

2

3

4

5

The tool has been restarted.

8

9

10

> print(x);

x

> a;

Warning: the identifier "a" is neither assigned to, nor bound to a library funct

ion nor external procedure, nor equal to the current free variable.

Will interpret "a" as "x".

x

See also: quit (8.135), execute (8.52)

8.146 return

Name: return
indicates an expression to be returned in a procedure
Usage:

return expression : void

Parameters:

• expression represents the expression to be returned

Description:

• The keyword return allows for returning the (evaluated) expression expression at the end of a
begin-end-block (-block) used as a Sollya procedure body. See proc for further details concerning
Sollya procedure definitions.

Statements for returning expressions using return are only possible at the end of a begin-end-block
used as a Sollya procedure body. Only one return statement can be given per begin-end-block.

• If at the end of a procedure definition using proc no return statement is given, a return void
statement is implicitely added. Procedures, i.e. procedure objects, when printed out in Sollya

defined with an implicit return void statement are displayed with this statement explicitly given.

Example 1:

154

> succ = proc(n) { var res; res := n + 1; return res; };

> succ(5);

6

> succ;

proc(n)

{

var res;

res := (n) + (1);

return res;

}

Example 2:

> hey = proc(s) { print("Hello",s); };

> hey("world");

Hello world

> hey;

proc(s)

{

print("Hello", s);

return void;

}

See also: proc (8.131), void (8.182)

8.147 revert

Name: revert
reverts a list.
Usage:

revert(L) : list → list

Parameters:

• L is a list.

Description:

• revert(L) returns the same list, but with its elements in reverse order.

• If L is an end-elliptic list, revert will fail with an error.

Example 1:

> revert([| |]);

[| |]

Example 2:

> revert([|2,3,5,2,1,4|]);

[|4, 1, 2, 5, 3, 2|]

8.148 RN

Name: RN
constant representing rounding-to-nearest mode.
Description:

155

• RN is used in command round to specify that the value must be rounded to the nearest repre-
sentable floating-point number.

Example 1:

> display=binary!;

> round(Pi,20,RN);

1.100100100001111111_2 * 2^(1)

See also: RD (8.139), RU (8.153), RZ (8.154), round (8.149), nearestint (8.104)

8.149 round

Name: round
rounds a number to a floating-point format.
Usage:

round(x,n,mode) : (constant, integer, RN|RZ|RU|RD) → constant
round(x,format,mode) : (constant,

HP|halfprecision|SG|single|D|double|DE|doubleextended|DD|doubledouble|QD|quad|TD|tripledouble,
RN|RZ|RU|RD) → constant

Parameters:

• x is a constant to be rounded.

• n is the precision of the target format.

• format is the name of a supported floating-point format.

• mode is the desired rounding mode.

Description:

• If used with an integer parameter n, round(x,n,mode) rounds x to a floating-point number with
precision n, according to rounding-mode mode.

• If used with a format parameter format, round(x,format,mode) rounds x to a floating-point number
in the floating-point format format, according to rounding-mode mode.

• Subnormal numbers are handled for the case when format is one of halfprecision, single, double,
doubleextended, doubledouble, quad or tripledouble. Otherwise, when format is an integer,
round does not take any exponent range into consideration, i.e. typically uses the full exponent
range of the underlying MPFR library.

Example 1:

> display=binary!;

> round(Pi,20,RN);

1.100100100001111111_2 * 2^(1)

Example 2:

> printdouble(round(exp(17),53,RU));

0x417709348c0ea4f9

> printdouble(D(exp(17)));

0x417709348c0ea4f9

Example 3:

156

> display=binary!;

> a=2^(-1100);

> round(a,53,RN);

1_2 * 2^(-1100)

> round(a,D,RN);

0

> double(a);

0

See also: RN (8.148), RD (8.139), RU (8.153), RZ (8.154), halfprecision (8.71), single (8.160),
double (8.43), doubleextended (8.45), doubledouble (8.44), quad (8.134), tripledouble (8.178),
roundcoefficients (8.150), roundcorrectly (8.151), printdouble (8.127), printsingle (8.129), ceil
(8.21), floor (8.64), nearestint (8.104)

8.150 roundcoefficients

Name: roundcoefficients
rounds the coefficients of a polynomial to classical formats.
Usage:

roundcoefficients(p,L) : (function, list) → function

Parameters:

• p is a function. Usually a polynomial.

• L is a list of formats.

Description:

• If p is a polynomial and L a list of floating-point formats, roundcoefficients(p,L) rounds each
coefficient of p to the corresponding format in L.

• If p is not a polynomial, roundcoefficients does not do anything.

• If L contains other elements than HP, halfprecision, SG, single, D, double, DE, doubleex-
tended, DD, doubledouble, QD, quad, TD and tripledouble, an error occurs.

• The coefficients in p corresponding to Xi is rounded to the format L[i]. If L does not contain
enough elements (e.g. if length(L) < degree(p)+1), a warning is displayed. However, the co-
efficients corresponding to an element of L are rounded. The trailing coefficients (that do not
have a corresponding element in L) are kept with their own precision. If L contains too much
elements, the trailing useless elements are ignored. In particular L may be end-elliptic in which
case roundcoefficients has the natural behavior.

Example 1:

> p=exp(1) + x*(exp(2) + x*exp(3));

> display=binary!;

> roundcoefficients(p,[|DD,D,D|]);

1.010110111111000010101000101100010100010101110110100101010011010101011111101110

001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010

100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100

010000011_2 * 2^(4)))

> roundcoefficients(p,[|DD,D...|]);

1.010110111111000010101000101100010100010101110110100101010011010101011111101110

001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010

100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100

010000011_2 * 2^(4)))

157

Example 2:

> f=sin(exp(1)*x);

> display=binary!;

> f;

sin(x * (1.010110111111000010101000101100010100010101110110100101010011010101011

11110111000101011000100000001001110011110100111100111100011101100010111001110001

01100000111101_2 * 2^(1)))

> roundcoefficients(f,[|D...|]);

sin(x * (1.010110111111000010101000101100010100010101110110100101010011010101011

11110111000101011000100000001001110011110100111100111100011101100010111001110001

01100000111101_2 * 2^(1)))

Example 3:

> p=exp(1) + x*(exp(2) + x*exp(3));

> verbosity=1!;

> display=binary!;

> roundcoefficients(p,[|DD,D|]);

Warning: the number of the given formats does not correspond to the degree of th

e given polynomial.

Warning: the 0th coefficient of the given polynomial does not evaluate to a floa

ting-point constant without any rounding.

Will evaluate the coefficient in the current precision in floating-point before

rounding to the target format.

Warning: the 1th coefficient of the given polynomial does not evaluate to a floa

ting-point constant without any rounding.

Will evaluate the coefficient in the current precision in floating-point before

rounding to the target format.

Warning: rounding may have happened.

1.010110111111000010101000101100010100010101110110100101010011010101011111101110

001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010

100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100

01000001011111001011010100101111011111110001010011011101000100110000111010001110

010000010110000101100000111001011100101001_2 * 2^(4)))

See also: halfprecision (8.71), single (8.160), double (8.43), doubleextended (8.45), doubledouble
(8.44), quad (8.134), tripledouble (8.178), fpminimax (8.65), remez (8.143), implementpoly (8.79),
subpoly (8.165)

8.151 roundcorrectly

Name: roundcorrectly
rounds an approximation range correctly to some precision
Usage:

roundcorrectly(range) : range → constant

Parameters:

• range represents a range in which an exact value lies

Description:

• Let range be a range of values, determined by some approximation process, safely bounding an
unknown value v. The command roundcorrectly(range) determines a precision such that for this
precision, rounding to the nearest any value in range yields to the same result, i.e. to the correct
rounding of v.

If no such precision exists, a warning is displayed and roundcorrectly evaluates to NaN.

158

Example 1:

> printbinary(roundcorrectly([1.010001_2; 1.0101_2]));

1.01_2

> printbinary(roundcorrectly([1.00001_2; 1.001_2]));

1_2

Example 2:

> roundcorrectly([-1; 1]);

@NaN@

See also: round (8.149), mantissa (8.97), exponent (8.56), precision (8.124)

8.152 roundingwarnings

Name: roundingwarnings
global variable controlling whether or not a warning is displayed when roundings occur.
Usage:

roundingwarnings = activation value : on|off → void
roundingwarnings = activation value ! : on|off → void

roundingwarnings : on|off

Parameters:

• activation value controls if warnings should be shown or not

Description:

• roundingwarnings is a global variable. When its value is on, warnings are emitted in appropriate
verbosity modes (see verbosity) when roundings occur. When its value is off, these warnings are
suppressed.

• This mode depends on a verbosity of at least 1. See verbosity for more details.

• Default is on when the standard input is a terminal and off when Sollya input is read from a file.

Example 1:

> verbosity=1!;

> roundingwarnings = on;

Rounding warning mode has been activated.

> exp(0.1);

Warning: Rounding occurred when converting the constant "0.1" to floating-point

with 165 bits.

If safe computation is needed, try to increase the precision.

Warning: rounding has happened. The value displayed is a faithful rounding of th

e true result.

1.1051709180756476248117078264902466682245471947375

> roundingwarnings = off;

Rounding warning mode has been deactivated.

> exp(0.1);

1.1051709180756476248117078264902466682245471947375

See also: on (8.111), off (8.110), verbosity (8.181), midpointmode (8.100), rationalmode (8.138)

159

8.153 RU

Name: RU
constant representing rounding-upwards mode.
Description:

• RU is used in command round to specify that the value x must be rounded to the smallest
floating-point number y such that x ≤ y.

Example 1:

> display=binary!;

> round(Pi,20,RU);

1.100100100001111111_2 * 2^(1)

See also: RZ (8.154), RD (8.139), RN (8.148), round (8.149), ceil (8.21)

8.154 RZ

Name: RZ
constant representing rounding-to-zero mode.
Description:

• RZ is used in command round to specify that the value must be rounded to the closest floating-
point number towards zero. It just consists in truncating the value to the desired format.

Example 1:

> display=binary!;

> round(Pi,20,RZ);

1.1001001000011111101_2 * 2^(1)

See also: RD (8.139), RU (8.153), RN (8.148), round (8.149), floor (8.64), ceil (8.21)

8.155 searchgal

Name: searchgal
searches for a preimage of a function such that the rounding the image yields an error smaller than a
constant
Usage:

searchgal(function, start, preimage precision, steps, format, error bound) : (function, constant, integer,
integer, HP|halfprecision|SG|single|D|double|DE|doubleextended|DD|doubledouble|QD|quad|TD|tripledouble,

constant) → list
searchgal(list of functions, start, preimage precision, steps, list of format, list of error bounds) : (list,

constant, integer, integer, list, list) → list

Parameters:

• function represents the function to be considered

• start represents a value around which the search is to be performed

• preimage precision represents the precision (discretization) for the eligible preimage values

• steps represents the binary logarithm (log2) of the number of search steps to be performed

• format represents the format the image of the function is to be rounded to

• error bound represents a upper bound on the relative rounding error when rounding the image

• list of functions represents the functions to be considered

160

• list of formats represents the respective formats the images of the functions are to be rounded to

• list of error bounds represents a upper bound on the relative rounding error when rounding the
image

Description:

• The command searchgal searches for a preimage z of function function or a list of functions list
of functions such that z is a floating-point number with preimage precision significant mantissa
bits and the image y of the function, respectively each image yi of the functions, rounds to format
format respectively to the corresponding format in list of format with a relative rounding error less
than error bound respectively the corresponding value in list of error bounds. During this search,
at most 2steps attempts are made. The search starts with a preimage value equal to start. This
value is then increased and decreased by 1 ulp in precision preimage precision until a value is found
or the step limit is reached.

If the search finds an appropriate preimage z, searchgal evaluates to a list containing this value.
Otherwise, searchgal evaluates to an empty list.

Example 1:

> searchgal(log(x),2,53,15,DD,1b-112);

[| |]

> searchgal(log(x),2,53,18,DD,1b-112);

[|2.0000000000384972054234822280704975128173828125|]

Example 2:

> f = exp(x);

> s = searchgal(f,2,53,18,DD,1b-112);

> if (s != [||]) then {

v = s[0];

print("The rounding error is 2^(",evaluate(log2(abs(DD(f)/f - 1)),v),")");

} else print("No value found");

The rounding error is 2^(-1.12106878438809380148206984258358542322113874177832e

2)

Example 3:

> searchgal([|sin(x),cos(x)|],1,53,15,[|D,D|],[|1b-62,1b-60|]);

[|1.00000000000159494639717649988597258925437927246094|]

See also: round (8.149), double (8.43), doubledouble (8.44), tripledouble (8.178), evaluate (8.51),
worstcase (8.183)

8.156 SG

Name: SG
short form for single
See also: single (8.160)

8.157 simplify

Name: simplify
simplifies an expression representing a function
Usage:

simplify(function) : function → function

Parameters:

161

• function represents the expression to be simplified

Description:

• The command simplify simplifies constant subexpressions of the expression given in argument
representing the function function. Those constant subexpressions are evaluated using floating-
point arithmetic with the global precision prec.

Example 1:

> print(simplify(sin(pi * x)));

sin(3.14159265358979323846264338327950288419716939937508 * x)

> print(simplify(erf(exp(3) + x * log(4))));

erf(2.00855369231876677409285296545817178969879078385544e1 + x * 1.3862943611198

906188344642429163531361510002687205)

Example 2:

> prec = 20!;

> t = erf(0.5);

> s = simplify(erf(0.5));

> prec = 200!;

> t;

0.5204998778130465376827466538919645287364515757579637000588058

> s;

0.52050018310546875

See also: simplifysafe (8.158), autosimplify (8.15), prec (8.123), evaluate (8.51), horner (8.76),
rationalmode (8.138)

8.158 simplifysafe

Name: simplifysafe
simplifies an expression representing a function
Usage:

simplifysafe(function) : function → function

Parameters:

• function represents the expression to be simplified

Description:

• The command simplifysafe simplifies the expression given in argument representing the function
function. The command simplifysafe does not endanger the safety of computations even in
Sollya’s floating-point environment: the function returned is mathematically equal to the function
function.

Remark that the simplification provided by simplifysafe is not perfect: they may exist simpler
equivalent expressions for expressions returned by simplifysafe.

Example 1:

> print(simplifysafe((6 + 2) + (5 + exp(0)) * x));

8 + 6 * x

Example 2:

> print(simplifysafe((log(x - x + 1) + asin(1))));

(pi) / 2

162

Example 3:

> print(simplifysafe((log(x - x + 1) + asin(1)) - (atan(1) * 2)));

(pi) / 2 - (pi) / 4 * 2

See also: simplify (8.157), autosimplify (8.15), rationalmode (8.138), horner (8.76)

8.159 sin

Name: sin
the sine function.
Description:

• sin is the usual sine function.

• It is defined for every real number x.

See also: asin (8.10), cos (8.26), tan (8.170)

8.160 single

Names: single, SG
rounding to the nearest IEEE 754 single (binary32).
Description:

• single is both a function and a constant.

• As a function, it rounds its argument to the nearest IEEE 754 single precision (i.e. IEEE754-2008
binary32) number. Subnormal numbers are supported as well as standard numbers: it is the real
rounding described in the standard.

• As a constant, it symbolizes the single precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands round and roundcoefficients. In is not supported for
implementpoly. See the corresponding help pages for examples.

Example 1:

> display=binary!;

> SG(0.1);

1.10011001100110011001101_2 * 2^(-4)

> SG(4.17);

1.000010101110000101001_2 * 2^(2)

> SG(1.011_2 * 2^(-1073));

0

See also: halfprecision (8.71), double (8.43), doubleextended (8.45), doubledouble (8.44), quad
(8.134), tripledouble (8.178), roundcoefficients (8.150), implementpoly (8.79), round (8.149),
printsingle (8.129)

8.161 sinh

Name: sinh
the hyperbolic sine function.
Description:

• sinh is the usual hyperbolic sine function: sinh(x) = ex−e−x

2 .

• It is defined for every real number x.

See also: asinh (8.11), cosh (8.27), tanh (8.171)

163

8.162 sort

Name: sort
sorts a list of real numbers.
Usage:

sort(L) : list → list

Parameters:

• L is a list.

Description:

• If L contains only constant values, sort(L) returns the same list, but sorted in increasing order.

• If L contains at least one element that is not a constant, the command fails with a type error.

• If L is an end-elliptic list, sort will fail with an error.

Example 1:

> sort([| |]);

[| |]

> sort([|2,3,5,2,1,4|]);

[|1, 2, 2, 3, 4, 5|]

8.163 sqrt

Name: sqrt
square root.
Description:

• sqrt is the square root, e.g. the inverse of the function square:
√
y is the unique positive x such

that x2 = y.

• It is defined only for x in [0; +∞].

8.164 string

Name: string
keyword representing a string type
Usage:

string : type type

Description:

• string represents the string type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like string cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.58), boolean (8.19), constant (8.25), function (8.67), integer (8.83), list
of (8.91), range (8.136)

164

8.165 subpoly

Name: subpoly
restricts the monomial basis of a polynomial to a list of monomials
Usage:

subpoly(polynomial, list) : (function, list) → function

Parameters:

• polynomial represents the polynomial the coefficients are taken from

• list represents the list of monomials to be taken

Description:

• subpoly extracts the coefficients of a polynomial polynomial and builds up a new polynomial out
of those coefficients associated to monomial degrees figuring in the list list.

If polynomial represents a function that is not a polynomial, subpoly returns 0.

If list is a list that is end-elliptic, let be j the last value explicitly specified in the list. All coefficients
of the polynomial associated to monomials greater or equal to j are taken.

Example 1:

> p = taylor(exp(x),5,0);

> s = subpoly(p,[|1,3,5|]);

> print(p);

1 + x * (1 + x * (0.5 + x * (1 / 6 + x * (1 / 24 + x / 120))))

> print(s);

x * (1 + x^2 * (1 / 6 + x^2 / 120))

Example 2:

> p = remez(atan(x),10,[-1,1]);

> subpoly(p,[|1,3,5...|]);

x * (0.99986632946591986997581285958052433296267358727229 + x^2 * (-0.3303047855

04861260596093435534236137298206064685038 + x^2 * (0.180159294636523467997437751

178959039617773054107393 + x * (-1.217048583218660289061758356493901143118773602

60197e-14 + x * (-8.5156350833702702996505336803770858918120961566741e-2 + x * (

1.39681284176342339364451388757935358048374878126733e-14 + x * (2.08451141754345

61643018447784809880955983412532269e-2 + x * (-5.6810131012579436265697622426011

349460288598691964e-15))))))))

Example 3:

> subpoly(exp(x),[|1,2,3|]);

0

See also: roundcoefficients (8.150), taylor (8.172), remez (8.143), fpminimax (8.65), implement-
poly (8.79)

8.166 substitute

Name: substitute
replace the occurrences of the free variable in an expression.
Usage:

substitute(f,g) : (function, function) → function
substitute(f,t) : (function, constant) → constant

165

Parameters:

• f is a function.

• g is a function.

• t is a real number.

Description:

• substitute(f, g) produces the function (f ◦ g) : x 7→ f(g(x)).

• substitute(f, t) is the constant f(t). Note that the constant is represented by its expression until
it has been evaluated (exactly the same way as if you type the expression f replacing instances of
the free variable by t).

• If f is stored in a variable F, the effect of the commands substitute(F,g) or substitute(F,t) is
absolutely equivalent to writing F(g) resp. F(t).

Example 1:

> f=sin(x);

> g=cos(x);

> substitute(f,g);

sin(cos(x))

> f(g);

sin(cos(x))

Example 2:

> a=1;

> f=sin(x);

> substitute(f,a);

0.84147098480789650665250232163029899962256306079837

> f(a);

0.84147098480789650665250232163029899962256306079837

See also: evaluate (8.51)

8.167 sup

Name: sup
gives the upper bound of an interval.
Usage:

sup(I) : range → constant
sup(x) : constant → constant

Parameters:

• I is an interval.

• x is a real number.

Description:

• Returns the upper bound of the interval I. Each bound of an interval has its own precision, so this
command is exact, even if the current precision is too small to represent the bound.

• When called on a real number x, sup considers it as an interval formed of a single point: [x, x]. In
other words, sup behaves like the identity.

166

Example 1:

> sup([1;3]);

3

> sup(5);

5

Example 2:

> display=binary!;

> I=[0; 0.111110000011111_2];

> sup(I);

1.11110000011111_2 * 2^(-1)

> prec=12!;

> sup(I);

1.11110000011111_2 * 2^(-1)

See also: inf (8.81), mid (8.99), max (8.98), min (8.101)

8.168 supnorm

Name: supnorm
computes an interval bounding the supremum norm of an approximation error (absolute or relative)
between a given polynomial and a function.
Usage:

supnorm(p, f, I, errorType, accuracy) : (function, function, range, absolute|relative, constant) → range

Parameters:

• p is a polynomial.

• f is a function.

• I is an interval.

• errorType is the type of error to be considered: absolute or relative (see details below).

• accuracy is a constant that controls the relative tightness of the interval returned.

Description:

• supnorm(p, f, I, errorType, accuracy) tries to compute an interval bound r = [`, u] for the
supremum norm of the error function εabsolute = p− f (when errorType evaluates to absolute)
or εrelative = p/f − 1 (when errorType evaluates to relative), over the interval I, such that

supx∈I{|ε(x)|} ⊆ r and 0 ≤
∣∣u
` − 1

∣∣ ≤ accuracy. If supnorm succeeds in computing a suitable
interval r, which it returns, that interval is guaranteed to contain the supremum norm value and to
satisfy the required quality. Otherwise, supnorm evaluates to error, displaying a corresponding
error message. These failure cases are rare and basically happen only for functions which are too
complicated.

• Roughly speaking, supnorm is based on taylorform to obtain a higher degree polynomial ap-
proximation for f. This process is coupled with an a posteriori validation of a potential supremum
norm upper bound. The validation is based on showing a certain polynomial the problem gets
reduced to does not vanish. In cases when this process alone does not succeed, for instance because
taylorform is unable to compute a sufficiently good approximation to f, supnorm falls back to
bisecting the working interval until safe supremum norm bounds can be computed with the required
accuracy or until the width of the subintervals becomes less than diam times the original interval
I, in which case supnorm fails.

167

• The algorithm used for supnorm is quite complex, which makes it impossible to explain it here in
further detail. Please find a complete description in the following article:

Sylvain Chevillard, John Harrison, Mioara Joldes, Christoph Lauter
Efficient and accurate computation of upper bounds of approximation errors
Journal of Theoretical Computer Science (TCS), 2010
LIP Research Report number RR LIP2010-2
http://prunel.ccsd.cnrs.fr/ensl-00445343/fr/

• In practical cases, supnorm should be able to automatically handle removable discontinuities that
relative errors might have. This means that usually, if f vanishes at a point x0 in the interval
considered, the approximation polynomial p is designed such that it also vanishes at the same
point with a multiplicity large enough. Hence, although f vanishes, εrelative = p/f − 1 may be
defined by continuous extension at such points x0, called removable discontinuities (see Example 3).

Example 1:

> p = remez(exp(x), 5, [-1;1]);

> midpointmode=on!;

> supnorm(p, exp(x), [-1;1], absolute, 2^(-40));

0.452055210438~2/7~e-4

Example 2:

> prec=200!;

> midpointmode=on!;

> d = [1;2];

> f = exp(cos(x)^2 + 1);

> p = remez(1,15,d,1/f,1e-40);

> theta=1b-60;

> prec=default!;

> mode=relative;

> supnorm(p,f,d,mode,theta);

0.30893006200251428~5/6~e-13

Example 3:

> midpointmode=on!;

> mode=relative;

> theta=1b-135;

> d = [-1b-2;1b-2];

> f = expm1(x);

> p = x * (1 + x * (2097145 * 2^(-22) + x * (349527 * 2^(-21) + x * (87609 *

2^(-21) + x * 4369 * 2^(-19)))));

> theta=1b-40;

> supnorm(p,f,d,mode,theta);

0.98349131972~2/3~e-7

See also: dirtyinfnorm (8.39), infnorm (8.82), checkinfnorm (8.22), absolute (8.2), relative (8.142),
taylorform (8.173), autodiff (8.14), numberroots (8.108), diam (8.35)

8.169 tail

Name: tail
gives the tail of a list.
Usage:

168

tail(L) : list → list

Parameters:

• L is a list.

Description:

• tail(L) returns the list L without its first element.

• If L is empty, the command will fail with an error.

• tail can also be used with end-elliptic lists. In this case, the result of tail is also an end-elliptic
list.

Example 1:

> tail([|1,2,3|]);

[|2, 3|]

> tail([|1,2...|]);

[|2...|]

See also: head (8.72)

8.170 tan

Name: tan
the tangent function.
Description:

• tan is the tangent function, defined by tan(x) = sin(x)/ cos(x).

• It is defined for every real number x that is not of the form nπ + π/2 where n is an integer.

See also: atan (8.12), cos (8.26), sin (8.159)

8.171 tanh

Name: tanh
the hyperbolic tangent function.
Description:

• tanh is the hyperbolic tangent function, defined by tanh(x) = sinh(x)/ cosh(x).

• It is defined for every real number x.

See also: atanh (8.13), cosh (8.27), sinh (8.161)

8.172 taylor

Name: taylor
computes a Taylor expansion of a function in a point
Usage:

taylor(function, degree, point) : (function, integer, constant) → function

Parameters:

• function represents the function to be expanded

• degree represents the degree of the expansion to be delivered

• point represents the point in which the function is to be developped

169

Description:

• The command taylor returns an expression that is a Taylor expansion of function function in point
point having the degree degree.

Let f be the function function, t be the point point and n be the degree degree. Then, tay-
lor(function,degree,point) evaluates to an expression mathematically equal to

n∑
i=0

f (i) (t)

i!
xi.

In other words, if p(x) denotes the polynomial returned by taylor, p(x−t) is the Taylor polynomial
of degree n of f developped at point t.

Remark that taylor evaluates to 0 if the degree degree is negative.

Example 1:

> print(taylor(exp(x),3,1));

exp(1) + x * (exp(1) + x * (0.5 * exp(1) + x * exp(1) / 6))

Example 2:

> print(taylor(asin(x),7,0));

x * (1 + x^2 * (1 / 6 + x^2 * (9 / 120 + x^2 * 225 / 5040)))

Example 3:

> print(taylor(erf(x),6,0));

x * (1 / sqrt((pi) / 4) + x^2 * ((sqrt((pi) / 4) * 4 / (pi) * (-2)) / 6 + x^2 *

(sqrt((pi) / 4) * 4 / (pi) * 12) / 120))

See also: remez (8.143), fpminimax (8.65), taylorform (8.173)

8.173 taylorform

Name: taylorform
computes a rigorous polynomial approximation (polynomial, interval error bound) for a function, based
on Taylor expansions.
Usage:

taylorform(f, n, x0, I, errorType) : (function, integer, constant, range, absolute|relative) → list
taylorform(f, n, x0, I, errorType) : (function, integer, range, range, absolute|relative) → list

taylorform(f, n, x0, errorType) : (function, integer, constant, absolute|relative) → list
taylorform(f, n, x0, errorType) : (function, integer, range, absolute|relative) → list

Parameters:

• f is the function to be approximated.

• n is the degree of the polynomial that must approximate f.

• x0 is the point (it can be a real number or an interval) where the Taylor exansion of the function
is to be considered.

• I is the interval over which the function is to be approximated. If this parameter is omitted, the
behavior is changed (see detailed description below).

• errorType (optional) is the type of error to be considered. See the detailed description below.
Default is absolute.

Description:

170

• taylorform computes an approximation polynomial and an interval error bound for function f .
More precisely, it returns a list L = [p, coeffErrors,∆] where:

– p is an approximation polynomial of degree n which is roughly speaking a numerical Taylor
expansion of f at the point x0.

– coeffsErrors is a list of n + 1 intervals. Each interval coeffsErrors[i] contains an enclosure of
all the errors accumulated when computing the i-th coefficient of p.

– ∆ is an interval that provides a bound for the approximation error between p and f . Its
significance depends on the errorType considered.

• The polynomial p and the bound ∆ are obtained using Taylor Models principles.

• Please note that x0 can be an interval. In general, it is meant to be a small interval approximating
a non representable value. If x0 is given as a constant expression, it is first numerically evaluated
(leading to a faithful rounding x̃0 at precision prec), and it is then replaced by the (exactly
representable) point-interval [x̃0, x̃0]. In particular, it is not the same to call taylorform with
x0 = pi and with x0 = [pi], for instance. In general, if the point around which one desires to
compute the polynomial is not exactly representable, one should preferably use a small interval
for x0.

• More formally, the mathematical property ensured by the algorithm may be stated as follows. For
all ξ0 in x0, there exist (small) values εi ∈ coeffsErrors[i] such that:

If errorType is absolute, ∀x ∈ I, ∃δ ∈ ∆, f(x)− p(x− ξ0) =
n∑

i=0

εi (x− ξ0)i + δ.

If errorType is relative, ∀x ∈ I, ∃δ ∈ ∆, f(x)− p(x− ξ0) =
n∑

i=0

εi (x− ξ0)i + δ (x− ξ0)n+1.

• It is also possible to use a large interval for x0, though it is not obvious to give an intuitive
sense to the result of taylorform in that case. A particular case that might be interesting is
when x0 = I in relative mode. In that case, denoting by pi the coefficient of p of order i, the
interval pi + coeffsError[i] gives an enclosure of f (i)(I)/i!. However, the command autodiff is
more convenient for computing such enclosures.

• When the interval I is not given, the approximated Taylor polynomial is computed but no remainder
is produced. In that case the returned list is L = [p, coeffErrors].

• The relative case is especially useful when functions with removable singularities are considered. In
such a case, this routine is able to compute a finite remainder bound, provided that the expansion
point given is the problematic removable singularity point.

• The algorithm does not guarantee that by increasing the degree of the approximation, the remainder
bound will become smaller. Moreover, it may even become larger due to the dependecy phenomenon
present with interval arithmetic. In order to reduce this phenomenon, a possible solution is to split
the definition domain I into several smaller intervals.

• The command taylor also computes a Taylor polynomial of a function. However it does not provide
a bound on the remainder. Besides, taylor is a somehow symbolic command: each coefficient of
the Taylor polynomial is computed exactly and returned as an expression tree exactly equal to
theoretical value. It is henceforth much more inefficient than taylorform and taylorform should
be prefered if only numercial (yet safe) computations are required. The same difference exists
between commands diff and autodiff.

Example 1:

171

> TL=taylorform(sin(x)/x, 10, 0, [-1,1], relative);

> p=TL[0];

> Delta=TL[2];

> errors=TL[1];

> for epsi in errors do epsi;

[0;0]

[0;0]

[0;5.3455294201843912922810729343029637576303937602101e-51]

[0;0]

[-3.3409558876152445576756705839393523485189961001313e-52;3.34095588761524455767

56705839393523485189961001313e-52]

[0;0]

[-1.04404871487976392427364705748104760891218628129103e-53;1.0440487148797639242

7364705748104760891218628129103e-53]

[0;0]

[-1.63132611699963113167757352731413688892529106451724e-55;1.6313261169996311316

7757352731413688892529106451724e-55]

[0;0]

[-1.91171029335894273243465647732125416670932546623114e-57;1.9117102933589427324

3465647732125416670932546623114e-57]

> p; Delta;

1 + x^2 * (-0.1667 + x^2 * (8.3333

333e-3 + x^2 * (-1.9841269841269841269

8412698412698412698412698412698e-4 + x^2 * (2.7557319223985890652557319223985890

6525573192239859e-6 + x^2 * (-2.505210838544171877505210838544171877505210838544

19e-8)))))

[-1.6135797443886066084999806203254010793747502812764e-10;1.61357974438860660849

99806203254010793747502812764e-10]

Example 2:

> TL=taylorform(exp(x), 10, 0, [-1,1], absolute);

> p=TL[0];

> Delta=TL[2];

> p; Delta;

1 + x * (1 + x * (0.5 + x * (0.166

7 + x * (4.16667e-2 + x * (8.3333333

33e-3 + x * (1.3888888888888888888888888

8888888888888888888888889e-3 + x * (1.984126984126984126984126984126984126984126

98412698e-4 + x * (2.4801587301587301587301587301587301587301587301587e-5 + x *

(2.75573192239858906525573192239858906525573192239859e-6 + x * 2.755731922398589

0652557319223985890652557319223986e-7)))))))))

[-2.31142719641187619441242534182684745832539555102969e-8;2.73126607556424744202

06278018039434042553645532164e-8]

Example 3:

> TL1 = taylorform(exp(x), 10, log2(10), [-1,1], absolute);

> TL2 = taylorform(exp(x), 10, [log2(10)], [-1,1], absolute);

> TL1==TL2;

false

Example 4:

172

> TL1 = taylorform(exp(x), 3, 0, [0,1], relative);

> TL2 = taylorform(exp(x), 3, 0, relative);

> TL1[0]==TL2[0];

true

> TL1[1]==TL2[1];

true

> length(TL1);

3

> length(TL2);

2

Example 5:

> f = exp(cos(x)); x0 = 0;

> TL = taylorform(f, 3, x0);

> T1 = TL[0];

> T2 = taylor(f, 3, x0);

> print(coeff(T1, 2));

-1.35914091422952261768014373567633124887862354684999

> print(coeff(T2, 2));

-(0.5 * exp(1))

See also: diff (8.37), autodiff (8.14), taylor (8.172), remez (8.143)

8.174 taylorrecursions

Name: taylorrecursions
controls the number of recursion steps when applying Taylor’s rule.
Usage:

taylorrecursions = n : integer → void
taylorrecursions = n ! : integer → void

taylorrecursions : integer

Parameters:

• n represents the number of recursions

Description:

• taylorrecursions is a global variable. Its value represents the number of steps of recursion that
are used when applying Taylor’s rule. This rule is applied by the interval evaluator present in the
core of Sollya (and particularly visible in commands like infnorm).

• To improve the quality of an interval evaluation of a function f , in particular when there are
problems of decorrelation), the evaluator of Sollya uses Taylor’s rule: f([a, b]) ⊆ f(m) + [a −
m, b−m] · f ′([a, b]) where m = a+b

2 . This rule can be applied recursively. The number of step in
this recursion process is controlled by taylorrecursions.

• Setting taylorrecursions to 0 makes Sollya use this rule only once; setting it to 1 makes Sollya
use the rule twice, and so on. In particular: the rule is always applied at least once.

Example 1:

173

> f=exp(x);

> p=remez(f,3,[0;1]);

> taylorrecursions=0;

The number of recursions for Taylor evaluation has been set to 0.

> evaluate(f-p, [0;1]);

[-0.46839364816303627522963565754743169862357620487739;0.46947781754667086491682

464997088054443583003517779]

> taylorrecursions=1;

The number of recursions for Taylor evaluation has been set to 1.

> evaluate(f-p, [0;1]);

[-0.13813111495387910066337940912697015317218647208804;0.13921528433751369035056

840155041899898444030238844]

See also: hopitalrecursions (8.75), evaluate (8.51), infnorm (8.82)

8.175 TD

Name: TD
short form for tripledouble
See also: tripledouble (8.178)

8.176 time

Name: time
procedure for timing Sollya code.
Usage:

time(code) : code → constant

Parameters:

• code is the code to be timed.

Description:

• time permits timing a Sollya instruction, resp. a begin-end block of Sollya instructions. The
timing value, measured in seconds, is returned as a Sollya constant (and not merely displayed
as for timing). This permits performing computations of the timing measurement value inside
Sollya.

• The extended nop command permits executing a defined number of useless instructions. Taking
the ratio of the time needed to execute a certain Sollya instruction and the time for executing a
nop therefore gives a way to abstract from the speed of a particular machine when evaluating an
algorithm’s performance.

Example 1:

> t = time(p=remez(sin(x),10,[-1;1]));

> write(t,"s were spent computing p = ",p,"\n");

0.144180000000000000000277555756156289135105907917023s were spent computing p =

-3.3426550293345171908513995127407122194691200059639e-17 + x * (0.99999999973628

359955372011464713121003442988167693 + x * (7.8802751877302786684499343799047732

495568873819693e-16 + x * (-0.16666666138601303703291298219674138568049869810728

5 + x * (-5.3734444911159112186289355138557504839692987221233e-15 + x * (8.33330

37186548537651002133031675072810009327877148e-3 + x * (1.33797221389218815884112

341005509831429347230871284e-14 + x * (-1.98344863018277416493268155154158924422

004290239026e-4 + x * (-1.3789116451286674170531616441916183417598709732816e-14

+ x * (2.6876259495430304684251822024896210963401672262005e-6 + x * 5.0282378350

010211058128384123578805586173782863605e-15)))))))))

174

Example 2:

> write(time({ p=remez(sin(x),10,[-1;1]); write("The error is 2^(", log2(dirtyin

fnorm(p-sin(x),[-1;1])), ")\n"); }), " s were spent\n");

The error is 2^(log2(2.39602467695631727848641768186659313738474584992648e-11))

0.250836999999999999961912411361453223435091786086559 s were spent

Example 3:

> t = time(bashexecute("sleep 10"));

> write(~(t-10),"s of execution overhead.\n");

2.56400000000000030664359940146823646500706672668457e-3s of execution overhead.

Example 4:

> ratio := time(p=remez(sin(x),10,[-1;1]))/time(nop(10));

> write("This ratio = ", ratio, " should somehow be independent of the type of m

achine.\n");

This ratio = 3.8480893468992754947015264199548398447676756853683 should somehow

be independent of the type of machine.

See also: timing (8.177), nop (8.106)

8.177 timing

Name: timing
global variable controlling timing measures in Sollya.
Usage:

timing = activation value : on|off → void
timing = activation value ! : on|off → void

timing : on|off

Parameters:

• activation value controls if timing should be performed or not

Description:

• timing is a global variable. When its value is on, the time spent in each command is measured
and displayed (for verbosity levels higher than 1).

Example 1:

> verbosity=1!;

> timing=on;

Timing has been activated.

> p=remez(sin(x),10,[-1;1]);

Information: Remez: computing the matrix spent 2 ms

Information: Remez: computing the quality of approximation spent 11 ms

Information: Remez: computing the matrix spent 1 ms

Information: Remez: computing the quality of approximation spent 7 ms

Information: Remez: computing the matrix spent 1 ms

Information: Remez: computing the quality of approximation spent 7 ms

Information: computing a minimax approximation spent 142 ms

Information: assignment spent 142 ms

Information: full execution of the last parse chunk spent 142 ms

See also: on (8.111), off (8.110), time (8.176)

175

8.178 tripledouble

Names: tripledouble, TD
represents a number as the sum of three IEEE doubles.
Description:

• tripledouble is both a function and a constant.

• As a function, it rounds its argument to the nearest number that can be written as the sum of
three double precision numbers.

• The algorithm used to compute tripledouble(x) is the following: let xh = double(x), let xm =
double(x−xh) and let xl = double(x−xh−xm). Return the number xh +xm +xl. Note that if
the current precision is not sufficient to represent exactly xh + xm + xl, a rounding will occur and
the result of tripledouble(x) will be useless.

• As a constant, it symbolizes the triple-double precision format. It is used in contexts when a
precision format is necessary, e.g. in the commands roundcoefficients and implementpoly. See
the corresponding help pages for examples.

Example 1:

> verbosity=1!;

> a = 1+ 2^(-55)+2^(-115);

> TD(a);

1.00000000000000002775557561562891353466491600711096

> prec=110!;

> TD(a);

Warning: double rounding occurred on invoking the triple-double rounding operato

r.

Try to increase the working precision.

1.000000000000000027755575615628913

See also: halfprecision (8.71), single (8.160), double (8.43), doubleextended (8.45), doubledouble
(8.44), quad (8.134), roundcoefficients (8.150), implementpoly (8.79), fpminimax (8.65), print-
expansion (8.128)

8.179 true

Name: true
the boolean value representing the truth.
Description:

• true is the usual boolean value.

Example 1:

> true && false;

false

> 2>1;

true

See also: false (8.59), && (8.6), || (8.112)

8.180 var

Name: var
declaration of a local variable in a scope
Usage:

176

var identifier1, identifier2,... , identifiern : void

Parameters:

• identifier1, identifier2,... , identifiern represent variable identifiers

Description:

• The keyword var allows for the declaration of local variables identifier1 through identifiern in a
begin-end-block ({}-block). Once declared as a local variable, an identifier will shadow identifiers
declared in higher scopes and undeclared identifiers available at top-level.

Variable declarations using var are only possible in the beginning of a begin-end-block. Several
var statements can be given. Once another statement is given in a begin-end-block, no more var
statements can be given.

Variables declared by var statements are dereferenced as error until they are assigned a value.

Example 1:

> exp(x);

exp(x)

> a = 3;

> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };

1

true

5

3

> a;

3

See also: error (8.50), proc (8.131)

8.181 verbosity

Name: verbosity
global variable controlling the amount of information displayed by commands.
Usage:

verbosity = n : integer → void
verbosity = n ! : integer → void

verbosity : integer

Parameters:

• n controls the amount of information to be displayed

Description:

• verbosity accepts any integer value. At level 0, commands do not display anything on standard
output. Note that very critical information may however be displayed on standard error.

• Default level is 1. It displays important information such as warnings when roundings happen.

• For higher levels more information is displayed depending on the command.

Example 1:

177

> verbosity=0!;

> 1.2+"toto";

error

> verbosity=1!;

> 1.2+"toto";

Warning: Rounding occurred when converting the constant "1.2" to floating-point

with 165 bits.

If safe computation is needed, try to increase the precision.

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

error

> verbosity=2!;

> 1.2+"toto";

Warning: Rounding occurred when converting the constant "1.2" to floating-point

with 165 bits.

If safe computation is needed, try to increase the precision.

Warning: at least one of the given expressions or a subexpression is not correct

ly typed

or its evaluation has failed because of some error on a side-effect.

Information: the expression or a partial evaluation of it has been the following

:

(1.1999) + ("toto")

error

See also: roundingwarnings (8.152)

8.182 void

Name: void
the functional result of a side-effect or empty argument resp. the corresponding type
Usage:

void : void | type type

Description:

• The variable void represents the functional result of a side-effect or an empty argument. It is used
only in combination with the applications of procedures or identifiers bound through externalproc
to external procedures.

The void result produced by a procedure or an external procedure is not printed at the prompt.
However, it is possible to print it out in a print statement or in complex data types such as lists.

The void argument is implicit when giving no argument to a procedure or an external procedure
when applied. It can nevertheless be given explicitly. For example, suppose that foo is a procedure
or an external procedure with a void argument. Then foo() and foo(void) are correct calls to foo.
Here, a distinction must be made for procedures having an arbitrary number of arguments. In
this case, an implicit void as the only parameter to a call of such a procedure gets converted into
an empty list of arguments, an explicit void gets passed as-is in the formal list of parameters the
procedure receives.

• void is used also as a type identifier for externalproc. Typically, an external procedure taking
void as an argument or returning void is bound with a signature void − > some type or some
type − > void. See externalproc for more details.

Example 1:

178

> print(void);

void

> void;

Example 2:

> hey = proc() { print("Hello world."); };

> hey;

proc()

{

print("Hello world.");

return void;

}

> hey();

Hello world.

> hey(void);

Hello world.

> print(hey());

Hello world.

void

Example 3:

> bashexecute("gcc -fPIC -Wall -c externalprocvoidexample.c");

> bashexecute("gcc -fPIC -shared -o externalprocvoidexample externalprocvoidexam

ple.o");

> externalproc(foo, "./externalprocvoidexample", void -> void);

> foo;

foo(void) -> void

> foo();

Hello from the external world.

> foo(void);

Hello from the external world.

> print(foo());

Hello from the external world.

void

Example 4:

> procedure blub(L = ...) { print("Argument list:", L); };

> blub(1);

Argument list: [|1|]

> blub();

Argument list: [| |]

> blub(void);

Argument list: [|void|]

See also: error (8.50), proc (8.131), externalproc (8.58)

8.183 worstcase

Name: worstcase
searches for hard-to-round cases of a function
Usage:

worstcase(function, preimage precision, preimage exponent range, image precision, error bound) :
(function, integer, range, integer, constant) → void

179

worstcase(function, preimage precision, preimage exponent range, image precision, error bound,
filename) : (function, integer, range, integer, constant, string) → void

Parameters:

• function represents the function to be considered

• preimage precision represents the precision of the preimages

• preimage exponent range represents the exponents in the preimage format

• image precision represents the precision of the format the images are to be rounded to

• error bound represents the upper bound for the search w.r.t. the relative rounding error

• filename represents a character sequence containing a filename

Description:

• The worstcase command is deprecated. It searches for hard-to-round cases of a function. The
command searchgal has a comparable functionality.

Example 1:

> worstcase(exp(x),24,[1,2],24,1b-26);

prec = 165

x = 1.99999988079071044921875 f(x) = 7.3890552520751953125 eps = 4

.5998601423446695596184695493764120138001954979037e-9 = 2^(-27.695763)

x = 2 f(x) = 7.38905620574951171875 eps = 1.4456360874967301812222

8379395533417878125150587072e-8 = 2^(-26.043720)

See also: round (8.149), searchgal (8.155), evaluate (8.51)

8.184 write

Name: write
prints an expression without separators
Usage:

write(expr1,...,exprn) : (any type,..., any type) → void
write(expr1,...,exprn) > filename : (any type,..., any type, string) → void
write(expr1,...,exprn) >> filename : (any type,...,any type, string) → void

Parameters:

• expr represents an expression

• filename represents a character sequence indicating a file name

Description:

• write(expr1,...,exprn) prints the expressions expr1 through exprn. The character sequences cor-
responding to the expressions are concatenated without any separator. No newline is displayed at
the end. In contrast to print, write expects the user to give all separators and newlines explicitly.

If a second argument filename is given after a single ”>”, the displaying is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double ”>>” is given, the output will be appended to the file filename.

The global variables display, midpointmode and fullparentheses have some influence on the
formatting of the output (see display, midpointmode and fullparentheses).

180

Remark that if one of the expressions expri given in argument is of type string, the character
sequence expri evaluates to is displayed. However, if expri is of type list and this list contains
a variable of type string, the expression for the list is displayed, i.e. all character sequences get
displayed surrounded by quotes (”). Nevertheless, escape sequences used upon defining character
sequences are interpreted immediately.

Example 1:

> write(x + 2 + exp(sin(x)));

> write("Hello\n");

x + 2 + exp(sin(x))Hello

> write("Hello","world\n");

Helloworld

> write("Hello","you", 4 + 3, "other persons.\n");

Helloyou7other persons.

Example 2:

> write("Hello","\n");

Hello

> write([|"Hello"|],"\n");

[|"Hello"|]

> s = "Hello";

> write(s,[|s|],"\n");

Hello[|"Hello"|]

> t = "Hello\tyou";

> write(t,[|t|],"\n");

Hello you[|"Hello\tyou"|]

Example 3:

> write(x + 2 + exp(sin(x))) > "foo.sol";

> readfile("foo.sol");

x + 2 + exp(sin(x))

Example 4:

> write(x + 2 + exp(sin(x))) >> "foo.sol";

See also: print (8.126), printexpansion (8.128), printdouble (8.127), printsingle (8.129), printxml
(8.130), readfile (8.140), autosimplify (8.15), display (8.41), midpointmode (8.100), fullparenthe-
ses (8.66), evaluate (8.51), roundingwarnings (8.152), autosimplify (8.15)

181

9 Appendix: interval arithmetic philosophy in Sollya

Although it is currently based on the MPFI library, Sollya has its own way of interpreting interval
arithmetic when infinities or NaN occur, or when a function is evaluated on an interval containing points
out of its domain, etc. This philosophy may differ from the one applied in MPFI. It is also possible that
the behavior of Sollya does not correspond to the behavior that one would expect, e.g. as a natural
consequence of the IEEE-754 standard.

The topology that we consider is always the usual topology of R = R∪{−∞, +∞}. For any function,
if one of its arguments is empty (respectively NaN), we return empty (respectively NaN).

9.1 Univariate functions

Let f be a univariate basic function and I an interval. We denote by J the result of the interval evaluation
of f over I in Sollya. If I is completely included in the domain of f , J will usually be the smallest
interval (at the current precision) containing the exact image f(I). However, in some cases, it may
happen that J is not as small as possible. It is guaranteed however, that J tends to f(I) when the
precision of the tool tends to infinity.

When f is not defined at some point x but is defined on a neighborhood of x, we consider that the
“value” of f at x is the convex hull of the limit points of f around x. For instance, consider the evaluation
of f = tan on [0, π]. It is not defined at π/2 (and only at this point). The limit points of f around π/2
are −∞ and +∞, so, we return [−∞, ∞]. Another example: f = sin on [+∞]. The function has no
limit at this point, but all points of [−1, 1] are limit points. So, we return [−1, 1].

Finally, if I contains a subinterval on which f is not defined, we return [NaN, NaN] (example:√
[−1, 2]).

9.2 Bivariate functions

Let f be a bivariate function and I1 and I2 be intervals. If I1 = [x] and I2 = [y] are both point-intervals,
we return the convex hull of the limit points of f around (x, y) if it exists. In particular, if f is defined at
(x, y) we return its value (or a small interval around it, if it is not exactly representable). As an example
[1]/[+∞] returns [0]. Also, [1]/[0] returns [−∞, +∞] (note that Sollya does not consider signed zeros).
If it is not possible to give a meaning to the expression f(I1, I2), we return NaN: for instance [0]/[0] or
[0] ∗ [+∞].

If one and only one of the intervals is a point-interval (say I1 = [x]), we consider the partial function
g : y 7→ f(x, y) and return the value that would be obtained when evaluating g on I2. For instance, in
order to evaluate [0]/I2, we consider the function g defined for every y 6= 0 by g(y) = 0/y = 0. Hence,
g(I2) = [0] (even if I2 contains 0, by the argument of limit-points). In particular, please note that
[0]/[−1, 1] returns [0] even though [0]/[0] returns NaN. This rule even holds when g can only be defined
as limit points: for instance, in the case I1/[0] we consider g : x 7→ x/0. This function cannot be defined
stricto sensu, but we can give it a meaning by considering 0 as a limit. Hence g is multivalued and its
value is {−∞, +∞} for every x. Hence, I1/[0] returns [−∞, +∞] when I1 is not a point-interval.

Finally, if neither I1 nor I2 are point-intervals, we try to give a meaning to f(I1, I2) by an argument
of limit-points when possible. For instance [1, 2]/[0, 1] returns [1, +∞].

As a special exception to these rules, [0][0] returns [1].

182

	Compilation and installation of the Sollya tool
	Compilation dependencies
	Sollya command line options

	Introduction
	General principles
	Variables
	Data types
	Booleans
	Numbers
	Rational numbers and rational arithmetic
	Intervals and interval arithmetic
	Functions
	Strings
	Particular values
	Lists
	Structures

	Iterative language elements: assignments, conditional statements and loops
	Blocks
	Assignments
	Conditional statements
	Loops

	Functional language elements: procedures and pattern matching
	Procedures
	Pattern matching

	Commands and functions
	abs
	absolute
	accurateinfnorm
	acos
	acosh
	&&
	:.
	
	asciiplot
	asin
	asinh
	atan
	atanh
	autodiff
	autosimplify
	bashevaluate
	bashexecute
	binary
	boolean
	canonical
	ceil
	checkinfnorm
	coeff
	@
	constant
	cos
	cosh
	D
	DD
	DE
	decimal
	default
	degree
	denominator
	diam
	dieonerrormode
	diff
	dirtyfindzeros
	dirtyinfnorm
	dirtyintegral
	display
	/
	double
	doubledouble
	doubleextended
	dyadic
	==
	erf
	erfc
	error
	evaluate
	execute
	exp
	expand
	expm1
	exponent
	externalplot
	externalproc
	false
	file
	findzeros
	fixed
	floating
	floor
	fpminimax
	fullparentheses
	function
	>=
	>
	guessdegree
	halfprecision
	head
	hexadecimal
	honorcoeffprec
	hopitalrecursions
	horner
	HP
	implementconstant
	implementpoly
	in
	inf
	infnorm
	integer
	integral
	isbound
	isevaluable
	<=
	length
	library
	libraryconstant
	list of
	log
	log10
	log1p
	log2
	<
	mantissa
	max
	mid
	midpointmode
	min
	-
	*
	nearestint
	!=
	nop
	!
	numberroots
	numerator
	off
	on
	||
	parse
	perturb
	pi
	plot
	+
	points
	postscript
	postscriptfile
	"705E
	powers
	prec
	precision
	.:
	print
	printdouble
	printexpansion
	printsingle
	printxml
	proc
	procedure
	QD
	quad
	quit
	range
	rationalapprox
	rationalmode
	RD
	readfile
	readxml
	relative
	remez
	rename
	restart
	return
	revert
	RN
	round
	roundcoefficients
	roundcorrectly
	roundingwarnings
	RU
	RZ
	searchgal
	SG
	simplify
	simplifysafe
	sin
	single
	sinh
	sort
	sqrt
	string
	subpoly
	substitute
	sup
	supnorm
	tail
	tan
	tanh
	taylor
	taylorform
	taylorrecursions
	TD
	time
	timing
	tripledouble
	true
	var
	verbosity
	void
	worstcase
	write

	Appendix: interval arithmetic philosophy in Sollya
	Univariate functions
	Bivariate functions

