
September 21, 2019

Bambu: High-Level Synthesis for Parallel Programming

Exploiting Vectorization in High-Level
Synthesis of Nested Irregular Loops

Serena Curzel

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria
serena.curzel@polimi.it

International Conference
on Supercomputing

June 14 - 18, 2021. Worldwide online event

14 June 2021

Outline

 Outer Loops Vectorization

 Proposed Design Flow

 Experimental Results

2

14 June 2021

DoAll Loops and their Optimizations

 DoAll loops
All the iterations can be executed in parallel
Number of iterations may be unknown at
compile time

 Optimizations:

3

A

B

C

A1

B1

C1

A2

B2

C2

Parallelization

A1

B1

C1

A2

B2

C2

Pipelining

A1-A2

B1-B2

C1-C2

Vectorization

14 June 2021

Outer Loops Vectorization

 It can be applied even if inner loops cannot be parallelized
 Operations of outer loops are executed simultaneously
 Operations of inner loops are executed in parallel only if they

belong to different instances of outer loop

4

A

B

C

D

E

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A1-A2

B1-B2

C1-C2

D1-D2

E1-E2

14 June 2021

Outer Loops Vectorization

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D4 D4

5

for(r=0; r<N; r++)
 for(c=0; c<N; c++)
 if(c > 0)
 out [r][c]=out[r][c-1]+in[r][c];
 else
 out[r][c]=in[r][c];

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

Inner Loop
Vectorization

A1 B1 C1 D1

A2 B2 C2 D2

A3 B4 C3 D3

A4 B4 C4 D4

Outer Loop
Vectorization

14 June 2021

Outer Loops Vectorization Constraints

 Outer Loop must be DoAll loop
 Number of iterations must be multiple of the degree of

parallelism
Ad-hoc management of last iterations would be required

 Nested loops cannot contain code in mutual exclusions
if(condition) {…} else {…}
is transformed into
if(condition) {…} if(!condition) {…}

 Number of iterations of nested loops can depend on a value
computed in outer loop

Nested loops can have an arbitrary number of iterations

6

14 June 2021

Outer Loops Vectorization in High-Level
Synthesis

 Vector functional units can be synthesized for all
computation operations

 Advantages with respect to complete loop parallelization
Simpler Finite State Machine
• Limits the area overhead
• Limits the frequency reduction

Aligned memory accesses
• Ad hoc memory allocation

Vector functional units can be obtained by
• sharing scalar functional units
• replicating scalar functional units

 Disadvantages
Larger memory infrastructure
More complex functional units

7

14 June 2021

Proposed Design Flow
8

Analysis
C source code

Preprocessing

Instructions
Classification

Instructions
Transformation

Synthesis
Hardware
Accelerator

14 June 2021

Proposed Design Flow:
Analysis

 Identification of DoAll loops
Annotations (e.g.,
openMP pragmas)
Compiler analyses
Polyhedral analysis
Other analyses

#pragma omp simd
for(i=0; i<16; i++){
 sum=0;
 for(j=0; j<i; j++) {
 if(sum<10) {
 sum=sum+in[i][j];
 } else {
 sum=sum-in2[i][j];
 }
 res[i] = sum/k;
}

9

14 June 2021

Proposed Design Flow:
PreProcessing Transformation

 Removing of mutual
exclusion code – potentially
worsening performances

 Decomposition of complex
operations

Vectorization can be
applied selectively to the
different parts of
complex operations

#pragma omp simd
for(i=0; i<16; i++){
 sum=0;
 for(j=0; j<k; j++) {
 c = sum<10;
 if(c) {
 temp=in[i][j];
 sumS=sum+temp;
 }
 if(!c) {
 temp=in2[i][j];
 sumS=sum-temp;
 }
 }
 res[i] = sum/k;
}

10

14 June 2021

Proposed Design Flow:
Instructions Classification

 Vector instructions

 Multiscalar instructions
Cannot implemented as
vector or
Too large to be synthesized
as vector instruction

 DoAll loop instructions

 Nested loop instructions

#pragma omp simd
for(i=0; i<16; i++){
 sum=0;
 for(j=0; j<k; j++) {
 c = sum<10;
 if(c) {
 temp=in[i][j];
 sumS=sum+temp;
 }
 if(!c) {
 temp=in2[i][j];
 sumS=sum-temp;
 }
 }
 res[i] = sum/k;
}

11

14 June 2021

Proposed Flow:
Instructions Transformation

 Vector instructions
Transformed in a single
vector instruction

 Multiscalar instructions
Transformed in N scalar
instructions

 DoAll loop instructions
Increment is fixed

 Nested loop instructions
Operands are fixed

#pragma omp simd
for(i={0,1}; i<16; i+={2,2}){
 sum={0,0};
 for(j=0; j<k; j++) {
 c = sum<{10,10};
 if(c[0] or c[1]) {
 temp[0]=in[i[0]][j]; (c[0])
 temp[1]=in[i[1]][j]; (c[1])
 sumS=sum+temp; (c[0], c[1])
 }
 if(!(c[0] or c[1])) {
 temp[0]=in2[i[0]][j];(!c[0])
 temp[1]=in2[i[0]][j];(!c[1])
 sumS=sum-temp; (!c[0],!c[1])
 }
 }
 res[i[0]] = sum[0]/k;
 res[i[1]] = sum[1]/k;
}

12

14 June 2021

Proposed Design Flow:
Synthesis

 High Level Synthesis starting from transformed IR

13

Multiple Scalar Functional
Units
+ Very good performances
+ Shared functional units
- Larger area

Pipeline Functional Unit
+ Good performances
- More Complex design Scalar Functional Unit

+ Good area
- Worst performances

FU1
FU1
FU1 FU1
FU1

FU1FU1

FU1

FU2 FU3 FU4FU1

VECTOR FU

14 June 2021

Experimental Evaluation

 Parallel benchmarks for High Level Synthesis annotated with
#pragma omp simd

 Parallel degrees considered for vectorization: 1 2 4 8
 Target devices:

Xilinx Zynq-7000 xc7z020
Altera Cyclone II EP2C70F896C6

 Results:
Max speedup: 7.35x
Max reduction of area-delay product: 40%

14

14 June 2021

Experimental Evaluation:
Case Study : Add

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

15

Area
(LUT-FF)

0 1 2 3 4 5 6 7 8
0
1
2
3
4

Speed-Up

0 1 2 3 4 5 6 7 8
0
1
2
3
4

Area-Delay
Product

14 June 2021

Conclusions

 Vectorization of Outer Loops can be integrated in High Level
Synthesis Flow

Synthesis of vector functional unit is required
 Memory accesses are the bottleneck which prevents

obtaining maximum speedup
Different memory allocation is required

16

	Slide 1
	Outline
	DoAll Loops and their Optimizations
	Outer Loops Vectorization
	Outer Loops Vectorization
	Scenario
	Outer Loops Vectorization in High Level Synthesis
	Proposed flow
	Proposed Flow: Analysis
	Proposed Flow: PreProcessing Transformation
	Proposed Flow: Instruction Classification
	Proposed Flow: Instructions Transformation
	Proposed Flow: Synthesis
	Experimental Evaluation
	Experimental Evaluation: Case Study : Add
	Conclusions

