
September 21, 2019

Bambu: High-Level Synthesis for Parallel Programming

Exploiting Vectorization in High-Level
Synthesis of Nested Irregular Loops

Serena Curzel

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria
serena.curzel@polimi.it

International Conference
on Supercomputing

June 14 - 18, 2021. Worldwide online event

14 June 2021

Outline

 Outer Loops Vectorization

 Proposed Design Flow

 Experimental Results

2

14 June 2021

DoAll Loops and their Optimizations

 DoAll loops
All the iterations can be executed in parallel
Number of iterations may be unknown at
compile time

 Optimizations:

3

A

B

C

A1

B1

C1

A2

B2

C2

Parallelization

A1

B1

C1

A2

B2

C2

Pipelining

A1-A2

B1-B2

C1-C2

Vectorization

14 June 2021

Outer Loops Vectorization

 It can be applied even if inner loops cannot be parallelized
 Operations of outer loops are executed simultaneously
 Operations of inner loops are executed in parallel only if they

belong to different instances of outer loop

4

A

B

C

D

E

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A1-A2

B1-B2

C1-C2

D1-D2

E1-E2

14 June 2021

Outer Loops Vectorization

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D4 D4

5

for(r=0; r<N; r++)
 for(c=0; c<N; c++)
 if(c > 0)
 out [r][c]=out[r][c-1]+in[r][c];
 else
 out[r][c]=in[r][c];

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

Inner Loop
Vectorization

A1 B1 C1 D1

A2 B2 C2 D2

A3 B4 C3 D3

A4 B4 C4 D4

Outer Loop
Vectorization

14 June 2021

Outer Loops Vectorization Constraints

 Outer Loop must be DoAll loop
 Number of iterations must be multiple of the degree of

parallelism
Ad-hoc management of last iterations would be required

 Nested loops cannot contain code in mutual exclusions
if(condition) {…} else {…}
is transformed into
if(condition) {…} if(!condition) {…}

 Number of iterations of nested loops can depend on a value
computed in outer loop

Nested loops can have an arbitrary number of iterations

6

14 June 2021

Outer Loops Vectorization in High-Level
Synthesis

 Vector functional units can be synthesized for all
computation operations

 Advantages with respect to complete loop parallelization
Simpler Finite State Machine
• Limits the area overhead
• Limits the frequency reduction

Aligned memory accesses
• Ad hoc memory allocation

Vector functional units can be obtained by
• sharing scalar functional units
• replicating scalar functional units

 Disadvantages
Larger memory infrastructure
More complex functional units

7

14 June 2021

Proposed Design Flow
8

Analysis
C source code

Preprocessing

Instructions
Classification

Instructions
Transformation

Synthesis
Hardware
Accelerator

14 June 2021

Proposed Design Flow:
Analysis

 Identification of DoAll loops
Annotations (e.g.,
openMP pragmas)
Compiler analyses
Polyhedral analysis
Other analyses

#pragma omp simd
for(i=0; i<16; i++){
 sum=0;
 for(j=0; j<i; j++) {
 if(sum<10) {
 sum=sum+in[i][j];
 } else {
 sum=sum-in2[i][j];
 }
 res[i] = sum/k;
}

9

14 June 2021

Proposed Design Flow:
PreProcessing Transformation

 Removing of mutual
exclusion code – potentially
worsening performances

 Decomposition of complex
operations

Vectorization can be
applied selectively to the
different parts of
complex operations

#pragma omp simd
for(i=0; i<16; i++){
 sum=0;
 for(j=0; j<k; j++) {
 c = sum<10;
 if(c) {
 temp=in[i][j];
 sumS=sum+temp;
 }
 if(!c) {
 temp=in2[i][j];
 sumS=sum-temp;
 }
 }
 res[i] = sum/k;
}

10

14 June 2021

Proposed Design Flow:
Instructions Classification

 Vector instructions

 Multiscalar instructions
Cannot implemented as
vector or
Too large to be synthesized
as vector instruction

 DoAll loop instructions

 Nested loop instructions

#pragma omp simd
for(i=0; i<16; i++){
 sum=0;
 for(j=0; j<k; j++) {
 c = sum<10;
 if(c) {
 temp=in[i][j];
 sumS=sum+temp;
 }
 if(!c) {
 temp=in2[i][j];
 sumS=sum-temp;
 }
 }
 res[i] = sum/k;
}

11

14 June 2021

Proposed Flow:
Instructions Transformation

 Vector instructions
Transformed in a single
vector instruction

 Multiscalar instructions
Transformed in N scalar
instructions

 DoAll loop instructions
Increment is fixed

 Nested loop instructions
Operands are fixed

#pragma omp simd
for(i={0,1}; i<16; i+={2,2}){
 sum={0,0};
 for(j=0; j<k; j++) {
 c = sum<{10,10};
 if(c[0] or c[1]) {
 temp[0]=in[i[0]][j]; (c[0])
 temp[1]=in[i[1]][j]; (c[1])
 sumS=sum+temp; (c[0], c[1])
 }
 if(!(c[0] or c[1])) {
 temp[0]=in2[i[0]][j];(!c[0])
 temp[1]=in2[i[0]][j];(!c[1])
 sumS=sum-temp; (!c[0],!c[1])
 }
 }
 res[i[0]] = sum[0]/k;
 res[i[1]] = sum[1]/k;
}

12

14 June 2021

Proposed Design Flow:
Synthesis

 High Level Synthesis starting from transformed IR

13

Multiple Scalar Functional
Units
+ Very good performances
+ Shared functional units
- Larger area

Pipeline Functional Unit
+ Good performances
- More Complex design Scalar Functional Unit

+ Good area
- Worst performances

FU1
FU1
FU1 FU1
FU1

FU1FU1

FU1

FU2 FU3 FU4FU1

VECTOR FU

14 June 2021

Experimental Evaluation

 Parallel benchmarks for High Level Synthesis annotated with
#pragma omp simd

 Parallel degrees considered for vectorization: 1 2 4 8
 Target devices:

Xilinx Zynq-7000 xc7z020
Altera Cyclone II EP2C70F896C6

 Results:
Max speedup: 7.35x
Max reduction of area-delay product: 40%

14

14 June 2021

Experimental Evaluation:
Case Study : Add

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

15

Area
(LUT-FF)

0 1 2 3 4 5 6 7 8
0
1
2
3
4

Speed-Up

0 1 2 3 4 5 6 7 8
0
1
2
3
4

Area-Delay
Product

14 June 2021

Conclusions

 Vectorization of Outer Loops can be integrated in High Level
Synthesis Flow

Synthesis of vector functional unit is required
 Memory accesses are the bottleneck which prevents

obtaining maximum speedup
Different memory allocation is required

16

	Slide 1
	Outline
	DoAll Loops and their Optimizations
	Outer Loops Vectorization
	Outer Loops Vectorization
	Scenario
	Outer Loops Vectorization in High Level Synthesis
	Proposed flow
	Proposed Flow: Analysis
	Proposed Flow: PreProcessing Transformation
	Proposed Flow: Instruction Classification
	Proposed Flow: Instructions Transformation
	Proposed Flow: Synthesis
	Experimental Evaluation
	Experimental Evaluation: Case Study : Add
	Conclusions

