
Bambu: High-Level Synthesis for Parallel Programming

Compiler Based Optimizations, Tuning and
Customization of Generated Accelerators

Michele Fiorito

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria
michele.fiorito@polimi.it

International Conference

on Supercomputing 2021
June 14 - 18, 2021. Worldwide online event

June 14, 2021

2
Outline

❑ Reset, registering, FSM encoding

❑ Tuning accelerators by means of compiler
optimizations

❑ Bambu Optimizations

❑ System of Difference Constraints

❑Math support

June 14, 2021

3
Reset types and values

❑ Internal status of accelerators can be reset

Accelerators exposes a reset signal

❑ Register reset type:

no (default)

async

sync

❑ Reset level:

low (default)

high

❑ Example:

--reset-type=sync –-reset-level=high

June 14, 2021

4
Registered inputs

❑ A dedicated port is created for scalar parameters
of each module function

❑ Generated modules expect stable inputs

If inputs are not stable, they can be registered

❑ Registered inputs:

auto – (default) inputs are registered only for

shared functions

top – inputs are registered for top interface
and shared functions

yes

no

--registered-inputs=<value>

June 14, 2021

5
FSM-encoding

❑ Different types of encoding can be used in Finite
State Machine

auto – (default) depends on target

one-hot

binary

❑ Default: best encoding for logic synthesis tool

Vivado: one-hot

Other tools: binary

--fsm-encoding=<value>

June 14, 2021

6

Improve Area/Performance of
generated accelerators

❑ Performance and/or area of the generated
accelerators can be improved by tuning the design
flow

GCC/CLANG optimizations

Bambu IR optimizations

Bambu HLS algorithms

❑ Best design flow for every accelerator does not
exist

Trade off between area and performance

Effects of the single optimizations can be
different on the single accelerators

❑ Default:

Balanced area/performance trade off

June 14, 2021

7
GCC/CLANG Optimizations

❑Only GCC/CLANG target independent optimizations
are considered

❑ -O3 is not necessarily the best choice

Can improve performances

Can increment area

❑ User can tune this part of the flow:

Selecting optimization level:

Enabling/disabling single optimization:

Tuning parameters: --param

-O0 or –O1 or –O2 or –O3 or -Os

--param <name>=<value>

-f<optimization> -fno-<optimization>

June 14, 2021

8
Effect of GCC Optimizations

❑ Results refer to other Bambu options set to default
value

Opts Cycles Luts

O0 15764 11675

O1 7892 11052

O2 4679 10276

O3 3854 15679

O3 vectorize 3816 38553

O3 all inline 1327 13550

June 14, 2021

9
Bambu IR Analysis

❑ Collect information used by IR optimizations and
High Level Synthesis

❑ Data flow analysis

Scalar: based on SSA

Aggregates: exploit GCC+Bambu alias analysis

❑ Graphs Computation

Call Graph, CFG, DFG, …

❑ Loops identification

❑ Bit Value Analysis

Compute for each SSA which bit are used and
which bit are fixed

❑ Range Analysis

June 14, 2021

10
Bambu IR Optimizations

❑ Applied before HLS to the IR produced by GCC

❑ Two type of optimizations

Single instruction optimizations

Multiple instruction optimizations

Restructuring of Control Flow Graph

Fixing IR

❑ Sequences of optimizations can be applied multiple
times

Fixed point iteration optimization flow

June 14, 2021

11
Single Instruction Optimization

❑ IR lowering – make single instructions more
suitable to be implemented on FPGA

Expansion of multiplication by constant

Expansion of division by constant

Etc.

❑ Bit Value Optimization

Shrink operations to the only significant bits

June 14, 2021

12
Multiple Instruction Optimization

❑ Common Subexpression Elimination

❑ Dead Code Elimination

❑ Extract pattern (e.g., three input sum)

❑ LUT transformations

Merging multiple Boolean operations into a
single LUT-based operation

❑ Conditional Expression Restructuring

❑ Commutative Expression Restructuring

June 14, 2021

13
Restructuring of Control Flow Graph

❑ Speculation

❑ Code motion

❑Merging of conditional branch

Creation of multiple target branch

❑ Basic Block Manipulation

Remove (empty, dead, …)

Split

Merge

June 14, 2021

14
Fixing IR

❑ Struct assignment

Replaced with memcpy call

❑ Floating point operations

Replaced with function calls

❑ Integer divisions

Replaced with function calls

June 14, 2021

15
System of Difference Constraints

❑ Global scheduling based on ILP formulation

❑ Results are exploited to perform

Speculation

Code Motion

+ Improve performances of accelerators

- Potentially increment area of accelerators

- Increase High Level Synthesis time

--speculative-sdc-scheduling

June 14, 2021

16

IR optimizations: Example
16

June 14, 2021

17
Experimental setup

❑ Predefined design flows

BAMBU-AREA: optimized for area

BAMBU-PERFORMANCE: optimized for performances

BAMBU-BALANCED: optimized for trade-off
area/performance

BAMBU-AREA-MP, BAMBU-PERFORMANCE-MP,
BAMBU-BALANCED-MP: enable support to true dual
port memories

Default: BAMBU-BALANCED-MP

--experimental-setup=<setup>

June 14, 2021

18
Constraints

❑ Bambu assumes infinite resources during High
Level Synthesis

Produced solutions may not fit in the target
device

❑ Area of generated solutions can be indirectly
controlled by means of constraints

❑ User can constraint the number of available
functional units in each function

E.g.: fix the number of available multiplier in
each function

❑ Constraints are set by means of XML file

June 14, 2021

19
Example of constraints file

<?xml version="1.0"?>

<constraints>

<HLS_constraints>

<tech_constraints fu_name="mult_expr_FU"

fu_library="STD_FU" n="8"/>

</HLS_constraints>

</constraints>

June 14, 2021

20
Translation flow

❑ C→HDL without optimizations

GCC/CLANG optimizations are (mostly) disabled

Bambu IR optimizations are (mostly) disabled

❑ Can be exploited only when bambu is compiled
with development support

❑ Useful for debugging

-O0 –-cfg-max-transformations=0 -–no-chaining

June 14, 2021

21
Integer Division Algorithms

❑ You can control how to implement integer
divisions:

❑ Available implementations:

none: HDL based pipeline restoring division

nr1 (default): C-based non restoring division

with unrolling factor equal to 1

nr2: C-based non restoring division with

unrolling factor equal to 2

NR: C-based Newton-Raphson division

as: C-based align divisor shift dividentd method

--hls-div=<implementation>

June 14, 2021

22
Floating point support

❑ Possible ways of implementing floating point ops:

Softfloat (default): customized faithfully
rounded (nearest even) version of soft based
implementation

Softfloat-subnormal: soft based implementation
with support to subnormal

Softfloat GCC: GCC soft based implementation

Flopoco generated modules

--softfloat-subnormal

--soft-float

--soft-fp

--flopoco

June 14, 2021

23
Libm versions

❑ Bambu exploits High Level Synthesis to generate
accelerators implementing libm functions

❑ Two different versions of libm are available

1. Faithfully rounding (default)

2. Classical libm built integrating existing libm
source code from glibc, newlib, uclibc and musl
libraries.

• Worse performances and area

June 14, 2021

24
Hands-on time

Switch to Colab Notebook to test some of bambu optimizations

June 14, 2021

25
First example – ADPCM

Benchmark CYCLES HLS_execution_time

GCC49:adpcm_O0 33429 23,05

GCC49:adpcm_O1 24547 18,72

GCC49:adpcm_O2 24043 43,26

GCC49:adpcm_O3 10429 76,45

GCC49:adpcm_O3_inline 7503 99,58

GCC49:adpcm_O3_vectorize 6995 49,31

GCC49:adpcm_Os 24847 25,21

June 14, 2021

26
Second example – ADPCM

Benchmark CYCLES HLS_execution_time

GCC49:adpcm_O0_sdc 33479 64,38

GCC49:adpcm_O1_sdc 24297 57,09

GCC49:adpcm_O2_sdc 22863 83,53

GCC49:adpcm_O3_sdc 9149 175,93

GCC49:adpcm_O3_inline_sdc 5356 210,62

GCC49:adpcm_O3_vectorize_sdc 6135 110,81

GCC49:adpcm_Os_sdc 24397 68,45

June 14, 2021

27
Third example – Integer Division

Benchmark CYCLES HLS_execution_time

GCC49:dfdiv_none 1777 37,5

GCC49:dfdiv_nr1 1849 41,18

GCC49:dfdiv_nr2 1105 43,12

GCC49:dfdiv_NR 825 44,92

GCC49:dfdiv_as 841 30,14

