
A Design Methodology to Implement Memory Accesses in
High-Level Synthesis

Christian Pilato
Politecnico di Milano

Dipartimento di Elettronica ed
Informazione

Milano, 20133, Italy
pilato@elet.polimi.it

Fabrizio Ferrandi
Politecnico di Milano

Dipartimento di Elettronica ed
Informazione

Milano, 20133, Italy
ferrandi@elet.polimi.it

Donatella Sciuto
Politecnico di Milano

Dipartimento di Elettronica ed
Informazione

Milano, 20133, Italy
sciuto@elet.polimi.it

ABSTRACT
Nowadays, the memory synthesis is becoming the main bot-
tleneck for the generation of efficient hardware accelera-
tors. This paper presents a design methodology to effi-
ciently and automatically implement memory accesses in
High-Level Synthesis. In particular, the approach starts
from a behavioral specification (in pure C language) and
a set of design constraints, such as the memory addresses
where some of the data are stored.

The methodology classifies which variables can be inter-
nally or externally allocated to the different modules to gen-
erate the proper architecture, fully supporting a wide range
of C constructs, such as pointer arithmetic, function calls
and array accesses. Moreover it allows to parallelize the ac-
cesses when the memory address is known at compile time,
resulting in an efficient execution of the specification.

Categories and Subject Descriptors
B.5 [RTL Implementation]: Design Aids

General Terms
Design, Algorithms, Experimentation

Keywords
Memory Optimization, High-Level Synthesis

1. INTRODUCTION
The advancement of RTL synthesis tools and the stan-

dardization of hardware description languages, like VHDL
or Verilog, shifted the focus of the research towards an effi-
cient implementation of algorithmic descriptions into hard-
ware, both in terms of area and performance.

There is a growing consensus among VLSI designers that
one of the most effective methods to handle the complex-
ity of today’s system-on-chip (SoC) designs is to use tech-
niques, such as High-Level Synthesis (HLS), that start with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10 ...$10.00.

an abstract behavioral or algorithmic description of a cir-
cuit and automatically synthesize a structural description
of a digital circuit that realizes the behavior. In fact, the
designer of the application is usually able to program in a
High-Level Language (HLL), such as the C, but he/she has
often a limited experience in hardware design. For these
reasons, we strongly believe that the HLS tools should sup-
port specification provided in pure C language, where, in
case, the designer can specify additional information with
custom pragmas. In such a way, the migration from soft-
ware to hardware requires a limited intervention performed
by hand. However, this introduces additional issues, in par-
ticular when the application contains different constructs
which imply memory operations (e.g., pointer arithmetic or
function calls with parameters passed by reference), where
part of the data have to be allocated out of the accelerator.

The synthesis of memories is one of the most important
aspects in the design of efficient embedded systems [14, 15].
For example, at design time, the designer can analyze or
profile the memory accesses to obtain different information
about the data, and can also perform different optimizations
to resolve pointers and avoid unnecessary memory accesses
[16]. On the other hand, modern FPGA devices allow the
implementation of large on-chip memories, exploiting block
RAMs (BRAMs) or distributed RAMs. As a result, this fea-
ture can be exploited to improve the memory architecture
by creating internal memories for certain variables and by
parallelizing the accesses when the operations do not over-
lap their addressing spaces. However, this necessarily re-
quires an efficient design methodology to synthesize the ac-
celerator, ranging from the analysis at compile time to the
generation of the architecture, in order to support a wide
range of C constructs and evaluate the effects of the differ-
ent transformations or design decisions, in terms of area and
performance.

This paper proposes a semi-automatic framework to as-
sist the designer during HLS, focusing on memory aspects.
It adopts a compile-time analysis to determine the data (e.g.,
scalar variables, arrays, . . .) to be allocated in memories.
Then, it proposes a simple allocation policy, combined with
the decisions performed by the designer (specified by user
#pragma) about the physical allocation of the data, to deter-
mine where the data are stored. For example, it is possible
to specify constraints on the space available for internal allo-
cation, as well as the physical addresses of the variables that
the designer decides to allocate in the external memories. Fi-
nally, the methodology produces the proper architecture to

implement the resulting decisions: internal variables are al-
located on heterogeneous and distributed memories, whose
addresses are determined at compile time. On the other
hand, for the variables allocated on external memories, the
methodology is able to follow the decisions suggested by the
designer.

The main contributions of this work can be thus summa-
rized as follows:

• it proposes a comprehensive compile-time analysis to
automatically determine the variables which need a
memory allocation and the corresponding scope;

• it describes a preliminary technique to automatically
determine the localization on internal memories or to
take into account previous designer’s decisions;

• it demonstrates how the resulting allocations can be ef-
ficiently implemented with a proper architecture which
allows both static and dynamic resolution of the ac-
cesses, supporting a wide range of C constructs.

It is worth noting that, when addresses can be statically
resolved and data are allocated into internal memories, the
methodology adopts direct connections to such elements, al-
lowing parallel reads and writes when addresses do not over-
lap. On the other hand, when this is not possible, it is able
to dynamically resolve addresses and correctly perform the
computation. Finally, the methodology has been validated
on different real-life test cases, demonstrating how it is pos-
sible to effective implement efficient solutions for memory
allocation, with a very limited interaction with the designer.

The rest of this paper continues as follows. Section 2
overviews existing approaches for the synthesis of memory
accesses. In Section 3, we introduce and motivate the pro-
posed memory architecture which is the basis for our work.
Section 4 details the proposed methodology for the alloca-
tion of variables in either internal or external memories, as
well as the synthesis of the global architecture for the entire
accelerator. The methodology is then evaluated in Section
5, while Section 6 concludes the paper, also outlining future
directions of work.

2. RELATED WORK
In the last years, several approaches have been proposed

for the synthesis of memory accesses for embedded systems.
However, a comprehensive review of related work is beyond
the scope of this paper. We restrict our attention to in-
teractions between compile-time analyses and synthesis of
memory architectures in HLS.

The first complete modeling of memory accesses in HLS
has been introduced in [13], where the authors present dif-
ferent techniques to introduce such concepts in the common
HLS phases, such as the scheduling. Our work is comple-
mentary to this one, since it is more oriented to determine
which variables require the access to a memory location, to
perform the allocation and then to generate the proper ar-
chitecture in order to support the accesses. Any existing
technique for the scheduling can be then applied to derive
an efficient scheduling of the accesses.

Semeria and De Micheli [16] analyze the implementation
of pointers and propose different optimizations to statically
resolve the addresses and eliminate some of the memory ac-
cesses, based on the SUIF compiler. On the other hand,

this work does not support the sharing of function calls
since it does not support the resolution of pointers inside
a function. Similarly, the techniques proposed in [12] can be
adopted to efficiently resolve the addresses, also performing
dynamic computations, but it is not described how to imple-
ment an efficient architecture able to support function calls.
Instead, the proposed approach is based on GCC, taking ad-
vantages of the different analyses and optimizations that are
performed by this compiler. GCC represents the accesses as
the classical base+offset representation, where both of them
can be constant or variables and thus they can be statically
(e.g., at compile-time) or dynamically resolved. This allows
to support resolution of addresses inside the functions and
thus the sharing of function calls, even if all optimizations
proposed in [16] can be integrated as well.

In [10], the authors proposed a distributed memory archi-
tecture. They partition the design and the corresponding
data to reduce the overall connections into the chip and im-
prove the performance. Conceptually, we target a similar
architecture, where the variables allocated inside the core
are assigned to local internal memories, distributed with re-
spect to a classical monolithic memory. On the other hand,
we mainly focus on supporting both local and external allo-
cation, addressing the issues related to static/dynamic res-
olution of addresses.

In [11], the authors propose an architecture to improve
the memory accesses, exploiting local caches and speculative
reads. On the other hand, the authors do not describe how
to derive the allocation of operations to units and how to
manage allocation on internal memories as well as memory
accesses for nested functions.

Recently, [5] proposes LegUp, a HLS tool targeting Altera
devices, where all memory elements are explicitly identified
by memory tags. Then, a unique memory controller unit
is introduced in the top architecture to decode the different
requests, in terms of tags, and actually perform the memory
operations. However, they do not support accesses to exter-
nal memories and having a unique memory controller forces
to perform only one memory operation for each clock cycles,
even when the code accesses independent memory locations
(e.g., it reads from different arrays). The proposed memory
architecture is able to overcome most of these limitations.
Indeed, the variables allocated on internal memories are dis-
tributed across the different functions and operations which
addresses are known at compile-time. The data-path can
thus directly access the corresponding units and it also sup-
port external accesses by integrating the decision performed
by the designer, if any.

3. PROPOSED ARCHITECTURE
This section describes the general architecture of the ac-

celerators produced by the proposed methodology, motivat-
ing the different design choices.

For sake of clarity, let us assume that the designer wants
to implement the piece of code shown in Figure 1 as a hard-
ware accelerator. Note that the array arr can be allocated
internally to the function foo or in an external memory.
This decision can be performed by the designer by means
of #pragma’s or automatically determined by an allocation
methodology, such as the proposed one that simply allocates
the variables in the minimal scope for each of them in order
to minimize the storage resources.

The proposed architecture of each function module is based

int arr[2] = {1,2};

void bar(int* a, int b, int *c)
{
int d;
*c = 0;
for (d = 0; d < b; d++)
if (*(a+d) > *c) *c = a[d];

}

void foo(int a, int* e)
{
int max = 0;
bar(arr, 2, &max);
*e = a + max;

}

Figure 1: A simple example of C code to be imple-
mented in hardware.

on the classical controller/data-path paradigm (i.e., FSMD
[17]). Existing HLS tools, such as SPARK [7], implement
pointer parameters as IN/OUT ports. However, considering
the bar function, the parameter a is the base of an array
and it cannot be implemented in such a way. For this rea-
son, following the C semantic, these ports are implemented
as IN ports, where the memory addresses of the variables
have to be specified. Moreover, the same function bar ac-
cesses to an array that is allocated and initialized outside
the function itself. The function bar thus needs a memory
interface which has to be integrated with the architecture
at the higher level of the hierarchy. This element has to be
included into the data-path in order to be connected with
the functional units or the storage elements which provide
the values (e.g., address to be accessed or data to be written
in memory) or with the elements where the read data will
be eventually used.

Note that, in function bar, there are different memory ac-
cesses that can be avoided. For example, *(a+d) (or the
equivalent a[d]) is repeated twice in the same iteration,
one to perform the test and one, if needed, to update the
value pointed by c, as shown in Figure 2. Note that, in
this figure, each access to array has been translated into
the form *(a+d), which represents the situation “access to
the data contained into the location pointed by the address
(base+offset)”. In this case, to optimize such memory ac-
cesses, the designer could rewrite the code as shown in Fig-
ure 3. Considering two iterations over the array, the version
of the bar code in Figure 2 requires 9 memory accesses to
complete the execution, while the one shown in Figure 3
requires only 3 accesses. Such transformations could be au-
tomatically performed, but this is out of the scope of this
work, where we assume to implement the specification as it
is. Such transformations have thus to be performed before
providing the code to our methodology and the proposed
methodology can be also adopted to evaluate their effects.
Moreover, since the designer can also decide to allocate the
variables in different memories, the methodology also allows
to evaluate the cost of taking such decision, both in terms
of area (e.g., the internal memory allocation of the array
elements requires a dedicated memory of a certain size, as
described in the Section 3.2) and performance.

Considering the function foo, it has the same structure,
with a memory interface for the variable e since it is a pointer
parameter that potentially accesses the memory. Moreover,
it contains two variables which require a memory allocation,

int arr[2] = {1,2};

void bar(int* a, int b, int *c)
{
int d;
*c = 0;
for (d = 0; d < b; d++)
{
int tmp_1 = *(a+d);
int tmp_2 = *c;
if (tmp_1 > tmp_2)
{
int tmp_3 = *(a+d);
*c = tmp_3;

}
}

}

void foo(int a, int* e)
{
int max, max_2, max_1 = 0;
max = max_1;
bar(arr, 2, &max);
max_2 = max;
*e = a + max_2;

}

Figure 2: Restructuring of the code performed by
the complier to explicit the memory accesses.

that are arr and max. In fact, the former is an array, which
base address is given to the function bar to perform the scan
of all the elements, while the latter is a location where the
function bar will write the result. Thus the memory inter-
face of the called function has to be necessarily connected
to these memory elements in order to correctly access the
data.

Furthermore, function calls and accesses to external mem-
ories are usually operations with unknown latency, especially
when complex memory hierarchies are adopted outside the
hardware accelerator, ranging from local on-chip buffers to
different levels of caches or shared RAMs. For this reason,
we need to take this information into account during the
synthesis of the controller in order to ensure a correct ex-
ecution. We thus adopt the classical request/acknowledge
paradigm [6], represented by the start and done signals, re-
spectively. The controller can be then implemented with a
classical FSM, which is modified to wait for operation ter-
mination, as shown in Figure 4. Moreover, since each func-
tion call can have in turn different memory accesses and the
current architecture allows only one memory operation per
cycle (only one address bus), we constrain the scheduling
and the controller to have no more than one operation with
unknown latency per clock cycle.

void bar(int* a, int b, int *c)
{
int d, max = 0;
for (d = 0; d < b; d++)
{

int v = *(a+d);
if (v > max) max = v;

}
*c = max;

}

Figure 3: Code transformation on the function bar

to reduce memory accesses.

S3

S3_w

S2

S4

OP

OP

OP

OP

Figure 4: Example of FSM with an unbounded oper-
ation in S3. The input OP represents that the done
signal has been received, while ŌP means that the
controller is still waiting for the same signal. S3 w
is the waiting state associated with S3.

3.1 Memory Interface
This interface is generally adopted when the memory op-

eration needs to access a variable that is not allocated into
the same function module. In particular, it can be allocated
either in one of the outermost functions or in an external
memory. Such interface is shown in Figure 5 and it is con-
nected to the data-path with the following ports:

• LOAD/STORE are the requests directly performed
by the data-path, i.e., an operation requests a memory
access;

• done notifies the termination of the execution to the
controller (it represents the done signal);

• data r/data w represent the values from/to the mem-
ory, respectively;

• addr/offset represent the address to be effectively ac-
cessed, in terms of base address and the corresponding
offset, respectively;

• size represents the number of bytes to be effectively
read/written.

Note that the size signal has been introduced to perform
operations on data with different sizes (e.g., 8-bit, 16-bit,
32-bit and 64-bit variables).

Then, since only one memory operation can be performed
at each time, the memory interface of the current function
can form a chain with all interfaces of the functions which are
directly called by the function itself in order to propagate
the request until the correct addressed memory is found.
In particular, the request can be propagated from inside to
outside a function, up to the external memory, in case. The
module is thus augmented with the following ports:

data-path resources

Memory Interface

d
ata_

r

d
ata_

w

ad
d
r

o
ffset

size

d
o
n
e

L
O

A
D

S
T

O
R

E

M_in_LOAD

M_in_STORE

M_in_addr

M_in_data_w

M_in_size

M_o_LOAD

M_o_STORE

M_o_addr

M_o_size

M_Ready

M_in_data_r

M_o_data_w

Figure 5: Structure of the interface to the external
memory.

data-path resources

Internal Memory

d
ata_

r

d
ata_

w

o
ffset

clo
ck

L
O

A
D

S
T

O
R

E

S_in_LOAD

S_in_STORE

S_in_addr

S_in_data_r

S_in_size

S_o_Ready

S_o_data_r

S_in_Ready

chip select

addr

MEMORY

S_in_data_w

Figure 6: Structure of the interface with an internal
memory.

• M o LOAD/M o STORE are the requests gener-
ated by this module or the previous ones in the chain,
represented by the corresponding M in LOAD and
M in STORE signals;

• M in addr/M o addr represent the address to be ef-
fectively accessed;

• M in data w/M o data w represent the value to be
written in memory that is generated by this module or
the previous ones in the chain;

• M in data r represents the value eventually read from
the slave memories and returned to this module if it is
waiting for the request;

• M in size/M o size represent the number of bytes to
be effectively read/written.

• M Ready is the signal that notifies to this interface
that the LOAD request has been effectively completed,
if any, in order to consider valid the current value on
M in data r.

Note that, only one of LOAD, STORE, M in LOAD
and M in STORE signals can be active at the same time.
If one of LOAD/STORE signals is active, the operation
inside the data-path generates the request and the controller
waits until the M Ready notifies the end of execution. In
particular, for LOAD, the addr/offset is converted into
the proper M o addr to be accessed, as well as the size
is propagated to M o size. Then, the module will receive
the correct data on the M in data r, after the reading has
been performed (i.e., the M Ready raises), returning to
the data-path through the port data r. On the other hand,
for STORE, the value data w is put also on the port
M o data w to be effectively written to the proper loca-
tion. When the operation is not generated by the current
function, both LOAD and STORE signals are not active,
the M in data w, M in addr and M in size signals are
just propagated to the corresponding output ports, as well
as the command signals.

3.2 Internal Memory
A dedicated memory is introduced for each variable that

is directly allocated into the function, as shown in Figure 6.
Since this memory is defined at compile time, an absolute
and unique address (addr) can be assigned within the core.
The module has to support both direct access and dynamic
resolution of the address. The former case occurs when the
base address can be statically resolved (e.g., a[2] or a[i],

data-path + controller

(bar)

Internal Memory

(arr)
S_in_LOAD

S_in_STORE

S_in_size

S_in_data_w

S_in_data_r

S_o_Ready

S_in_Ready

chip select

addr

S_o_data_r

MEMORY

Internal Memory

(max)
S_in_LOAD

S_in_STORE

S_in_size

S_in_Ready

S_in_data_w

S_o_Ready

S_in_data_r

chip select

addr

S_o_data_r

MEMORY

Memory Interface

M_o_LOAD

M_o_STORE

M_o_addr

M_o_data_w

M_o_size

M_in_LOAD

M_in_STORE

M_in_addr

M_in_data_w

M_in_size

Memory Interface

M_out_LOAD

M_out_STORE

M_out_addr

M_out_data_w

M_out_size

M_in_STORE

M_in_addr

M_in_data_r

M_in_data_w

M_in_size

M_Ready

data-path + controller

(foo)
Extern

Interface

M_Ready

... ...

... ...

M_in_LOADM_in_data_r

S_in_addr S_in_addr

data_r

MEMORY
 data_w

addr

LOAD

STORE

Ready

Figure 7: Resulting architecture for the example shown in Figure 1.

where a is the variable allocated to the memory), while the
latter one when the actual address has to be resolved dy-
namically (e.g., *b++, where b could be initialized to any
of the memory addresses). In this case, the module has to
verify that the request is effectively addressing its memory.

For this reason, to support direct accesses, the module has
the following ports:

• LOAD/STORE are the requests directly performed
by the data-path, i.e., an operation requests an access
to the variable allocated on this memory;

• offset represents the offset which the request is per-
formed with respect to the base address addr (in case
of scalar variables, it will be forced to 0);

• data r/data w represent the values from/to the mem-
ory, respectively.

On the other hand, to support dynamic resolution, the fol-
lowing ports have been provided:

• S in LOAD/S in STORE are the potential requests
to the module;

• S in addr represents the address to be effectively ac-
cessed;

• S in data w potentially contains the value to be writ-
ten in the memory;

• S in size represent the number of bytes to be effec-
tively read/written.

• S in Ready notifies the current value on S in data
represents the data generated by another module and
thus it has to be propagated;

• S o data r potentially contains the value read from
the memory, otherwise it propagates the incoming sig-
nal S in data r;

• S o Ready notifies that the request has been effec-
tively completed and thus the value on S o data can
be considered as valid;

Also in this case, only one memory operation can be per-
formed at each time. For this reason, only one of LOAD,
STORE, S in LOAD and S in STORE signals can be
active at the same time. If one of LOAD/STORE signals
is active, it means that an operation inside the data-path
generated the request. In particular, for LOAD, offset is
added to the base address and the corresponding location
into the memory is accessed, directly returning the value
on data r, without any access to the bus. On the other
hand, for STORE, the value data w is also put on the port
M o data to be effectively written to the proper location.

When the request is not generated by the current func-
tion, none of the signals LOAD or STORE signals are
active, one of the S in LOAD or S in STORE signals
is active and the module has a chip select (CS) to deter-
mine if the incoming address S in addr is effectively ad-
dressing this memory. In fact, given a request at the input
(either S in LOAD or S in STORE), the CS determines
if S in addr refers to a variable within the space of the
memory by verifying the following condition:

addr ≤ S in addr < addr + memory size (1)

where memory size represents the size of the memory, ex-
pressed in bytes. If this condition is satisfied, it means that
the bus is effectively addressing this memory and the request
can be satisfied. In particular, the data value S in data w
is written at the proper location (in case of S in STORE)
or the stored value is returned on S o data r (enabling
also the S o Ready signal) when a load (S in LOAD)
is required. On the contrary, when the CS is not acti-
vated, it means that the request refers to a location outside
this memory and thus it simply propagates the incoming
value S in data r (potentially written by the actual ad-
dressed memory) to S o data r, as well as S in Ready to
S o Ready.

3.3 Global Interconnections
After all modules have been generated, we need to ef-

fectively connect all of them in order to correctly perform
the memory operations. Considering the example in Fig-
ure 1, the innermost function bar has no internal memories.
For this reason, its interface contains only master ports to
perform operations on external memories. Since the global
array arr can be allocated either in the memory external to
the core or in one of the internal memories to the foo func-
tion, the resulting architecture should support any of these
situations. In the following, let us assume to implement arr
in an internal memory (e.g., by declaring it as static int

arr[2] = {1,2}).
The proposed global architecture is shown in Figure 7,

adopting separated read/write chains. Such chains are ef-
fectively required on modern FPGA devices (e.g., Xilinx
Virtex-5 FPGA), which do not support three-state elements
and, thus, require to physically separate reading and writing
chains to avoid such kind of problems, as well as avoiding to
generate combinational loop paths.

Considering the synthesis of the top function foo, we cre-
ate a master chain collecting all memory requests (one at
each time), starting from the function bar contained into
the specification and going through all the remaining func-
tions, if any, as well as the memory interface of the func-
tion itself. The master chain terminates on the interface of
the external memory. In fact, since the internal allocation
is statically performed, starting from the address 0x0, this
element is able to identify if the address refers to a vari-
able allocated internally to the module (i.e., M o addr <
allocated, where allocated represents the amount of allo-
cated space). In this case, the address and the requests are
forwarded in broadcast to all internal memories, otherwise
the access refers to the external memory and the request
is accordingly routed. Then, only one of the memories (ei-
ther external or internal) will effectively provide the data.
For this reason, only one memory will provide the correct
data to the corresponding signal S o data r and activate
the S o Ready one, while the memories that are not acti-
vated (i.e., which CS is not enabled) will simply propagate
the data from their input S in data r to the corresponding
S o data r port. At the end, the slave chain is reconnected
to the master one, in order to effectively provide the data
to the module which performed the request and which is
waiting for the corresponding M Ready signal.

Note that the architecture behaves in the same way for
STORE operations, where the data to be written is for-
warded in broadcast to all the slave modules in order to find
the proper memory. This memory will be the only one which
effectively performs the writing, while the other ones (which
CS is not enabled) simply discard the data.

4. PROPOSED DESIGN METHODOLOGY
An overview of the proposed approach is shown in Figure

8. It receives as input the C code to be implemented in
hardware, annotated with pragmas to specify additional in-
formation for the synthesis (phase 1 in Figure 8). As output,
it produces the structural RTL description, in Verilog, of all
modules, implementing the decisions which have been per-
formed during the synthesis (phase 5). Internal memories
are also included in such description, along with the proper
initialization values. The proposed methodology interfaces

4

Compile-time

analysis

(fun1)

Compile-time

analysis

(funN)

...

Memory Allocation

HLS

(fun1)

HLS

(funN)

...

Netlist Generation

Module

Library

Initial C

code

Call graph + CDFG +

memory info

addr's

HDL

description

pragma

information

Call graph + CDFG +

memory info

1

2

3

5

Figure 8: Overview of the proposed methodology.

the GNU C Compiler (GCC) [1] to derive the call graph, as
well as the intermediate representation of the entire specifi-
cation. Then, the phases to complete the synthesis are the
following:

1. the analysis of variables and operations (phase 2),

2. the memory allocation (phase 3) and

3. the actual HLS of the modules (phase 4).

Note that the phase 2 and the phase 4 are performed for each
function separately, while the phase 3 is globally performed
since it has to take into account the interactions among the
functions to determine the scope of the variables and thus
the proper location. In the following, we will effectively
detail each of these steps.

4.1 Compile-Time Analysis
This phase works on the intermediate representation ob-

tained from the GCC compiler and it is in turn divided in
two sub-phases:

1. the identification of variables which are involved in
memory operations;

2. the identification of LOAD/STORE operations, as well
as operations referring to memory.

In the first step, we analyze each operation of all the func-
tions to retrieve information about the operator and the
corresponding operands. The GCC adopts the GIMPLE in-
termediate representation [9], where each of the elements
(e.g., operations, variables, etc.) is represented by a unique

@1: int arr[2] = {1,2};

void bar(int* a, int b, int *c) //@2 (@3, @4, @5)
{
@6: int d;
@7: *c = 0;
@8: for (d = 0; d < b; d++)
@9: {
@10: int tmp_1 = *(a+d);
@11: int tmp_2 = *c;
@12: if (tmp_1 > tmp_2)
@13: {
@14: int tmp_3 = *(a+d);
@15: *c = tmp_3;
@16: }
@17: }
}

void foo(int a, int* e) //@18 (@19, @20)
{
@21: int max, max_2, max_1 = 0;
@22: max = max_1;
@23: bar(arr, 2, &max);
@24: max_2 = max;
@25: *e = a + max_2;
}

Figure 9: Identifiers associated with each operation
of the example in Figure 2.

node, with additional information, such as, for example,
extern/static attributes associated with the gloval vari-
ables. In the following, we will assume the notation shown
in Figure 9, where, for example, the identifier @2 represents
the definition of the function bar, while the identifiers @3,
@4 and @5 represent the related parameters.

There are several elements which refer to memory by def-
inition, such as arrays or pointer variables. On the other
hand, considering, for example, the scalar variable max in
function foo, it is required to have a memory address (ex-
pressed by the operator &) to be given to the function bar. In
fact, the called function will write into this location through
a pointer operation. Thus, considering the example in Fig-
ure 9, Table 1 recaps all the memory variables accessed by
each operation.

Note that, in this table, the identifiers @1 and @22 repre-
sent variables to be stored in memory, that are arr and max,
respectively. On the other hand, @2 and @5 represent ac-
cesses to memory locations through pointers. Then, since
each operation can be associated with the corresponding
function, we can project these sets of variables onto the call
graph, to represent all the variables accessed by each func-
tion. The resulting annotated call graph is shown in Figure
10. In this graph, each node represents a function, while the

Table 1: Memory variables for each operation.
Function Operation Variables

bar

@7 @5
@10 @2
@11 @5
@14 @2
@15 @5

foo
@22 @21
@23 @1, @21
@24 @21
@25 @19

@1, @19,

@22

@2, @5

foo

bar

@1, @22

Figure 10: Call graph of the example shown in Fig-
ure 2, annotated with memory variables.

arcs represent function calls, with the exchanged data. Note
that this graph can be also adopted to perform additional
memory analysis, such as pointer optimization, but this is
out of the scope of this work.

After performing such analysis, each operation can be
then classified as LOAD/STORE if 1) it is an assignment
between two values and 2) the operation refers to a mem-
ory variable in the left/right part of the assignment. In this
way, besides classical array operations (e.g., @10 and @14)
and pointer ones (e.g., @7, @11, . . .), also the operations
@22 and @24 can be considered as LOAD/STORE since the
value contained into max_1 has to be stored in a memory lo-
cation before starting the function bar and, then, the value
resulting after the function execution has to be retrieved to
continue with the computation. These are the operations
that will generate the requests to the memory interfaces or
the internal memories. Finally, note that the operation @23

is a function call. In this case, there is not any direct mem-
ory operation, but the corresponding variable addresses are
just given to the module implementing the function bar to
access the proper memory locations.

4.2 Memory Allocation
In this phase, we propose a very simple algorithm to deter-

mine where the variables have to be allocated. In particular,
we analyze the call graph resulting from the previous step
in order to determine the minimal scope of all the variables
and, then, the actual memory allocation for each of them.

We thus adopt a simple procedure, that starts from in-
nermost functions, up to the outermost one. For example,
considering the simple call graph in Figure 11, the functions
are analyzed in the following order: f3, f2 and f1. Then, for
each function, we analyze the corresponding memory vari-
ables, tagging as true, i.e., to be declared, a variable when it
is referred into the function, and as false otherwise. In the
example, @40 is marked as true for both f2 and f3. Then,
we propagate this information to outermost ones and, when
there are at least two called functions referring to the same

@50

@40 @40

f1

f2f3

Figure 11: Simple call graph to show the scope iden-
tification.

Memory

Interface

addr

offset

'd4 size

Reg(d)

'd0

ca

Figure 12: Resulting connections to the memory
interface for the function bar. Reg(d) represents
the out port of the register where the variable d
is stored.

variable (e.g., @40 by f2 and f3), this is marked as true also
in the current function (e.g., f1) and as false otherwise.

At the end of this analysis, the functions contain the vari-
ables effectively in their scope. For the example in Figure
11, f1 contains @40 and @50, while f2 contains only @40,
as well as f3. In such a way, if the variable has to be in-
ternally allocated, performing a top-down analysis, the first
declaring tag (i.e., where it is marked as true) for variable
@40 is in f1. In this way, the variable will be allocated in
this function and it is effectively visible, through the slave
chains, to the other two functions.

After performing this analysis, the variables assigned by
the designer to external memories are directly assigned to
these addresses. For example, if the variable arr in Figure
1 has been declared as:

#pragma MEM_address arr 0x0f000

int arr[2] = {1,2};

it would be assigned to the external memory, with address
0x0f000. On the contrary, for all remaining variables, we
perform a progressive local allocation (similarly to the tag-
ging performed by LegUp [5]), starting from the base address
0x0 in order to statically determine the addresses of all the
variables. Considering the same example, with a local al-
location of both the variables arr and max, we can assign
the addresses 0x0 and 0x8, respectively. In fact, considering
32-bit integers, the former variable requires 8 bytes, while
the latter one requires 4 bytes.

4.3 Memory-Aware High-Level Synthesis
In this last phase, we finally perform the actual high-level

synthesis of the different functions, taking into account the
memory decisions performed in the previous steps. Note
that any of the existing algorithms can be adopted to per-
form the different sub-steps, such as scheduling, resource
binding and interconnection optimization.

Considering memory aspects, given a LOAD/STORE op-
eration, if the corresponding variable has been allocated to
the same function, the request is directly performed on the
corresponding local memory, which is allocated in the same
data-path. On the other hand, if the variable has been al-
located in an outermost function, the request is then per-
formed though the memory interface to access the read/write
chains and get the value back. Thus, the scheduling can take
into account such information (i.e., the unit where the op-
eration is executed) and then produce an efficient solution,
as well as the finite state machine to correctly manage the
execution. Moreover, when performing such operations, we

Table 2: Source-level characteristics of the bench-
marks.

Repr. Lines Func. Variables
data type code Scalar Array

MIPS 32-bit scalar 232 1 32 5
GSM 16-bit array 393 12 150 10
ADPCM 32-bit array 541 15 269 26

need to specify the base address (apart from internal mem-
ories, which is directly encoded into the memory) and the
corresponding offset. Both of them can be statically precom-
puted (e.g., they are known at compile time) or stored into
a register or given as input (e.g., pointer parameter). In the
first case, the constant value is directly connected with the
addr or the offsets ports. In the remaining cases, the output
of the corresponding register or input port is connected with
the corresponding port of the memory unit. An example of
the resulting interfacing is shown in Figure 12, where the in-
put addresses are connected with the input port of the unit
(for the dynamic resolution of the addresses), as well as the
offset. Note that this value is null for the parameter *c since
we are accessing a scalar variable. All variables are 32-bit
integers and thus each LOAD/STORE operates on 4 bytes.
For this reason, the port size is set to the constant value
4. Note that, in this way, we are able to perform the shar-
ing of function calls, where different executions of the same
module will simply have different input addresses to work
on, similarly to the corresponding software counterpart.

Finally, at the end of the synthesis of each function, the
master/slave chains are composed taking into account the
modules of the called functions, as well as the internal mem-
ories of the function itself. The resulting architecture is thus
similar to the one obtained for the example shown Figure 1
and shown in Figure 7.

5. EXPERIMENTAL RESULTS
The proposed methodology has been implemented in a

C++ prototype, interfacing the GNU C Compiler (GCC)
ver. 4.5 [1], and it has been applied to some real-life bench-
marks from CHStone [8], a suite of benchmark programs for
C-based high-level synthesis tools, which details are shown
in Table 2. Of our benchmarks, MIPS describes instruction-
level behaviors of a simplified MIPS processor which has 30
types of instructions, along with a simple program as test
vector. GSM is a program for Linear Prediction Coding
(LPC) analysis of Global System for Mobile Communica-
tions (GSM), which is a communication protocol for mobile
phones. ADPCM implements the CCITT G.722 ADPCM
algorithm for voice compression. It includes both encoding
and decoding functions.

We performed the HLS with state-of-the-art algorithms
for the different steps. In particular, we adopted a clas-
sic list-based scheduling, based on dynamic mobility values,
followed by a resource binding targeting multiplexer mini-
mization. We targeted a Xilinx Virtex-5 XC5VLX50 FPGA
device [4], where three-states are not supported and, thus,
the separation of read/write chains is effectively required.
The target frequency has been set to 100MHz for all the ex-
periments. Internal memories have been implemented with
BRAMs, which require 2 cycles (in pipelining) for reading
and 1 cycle for writing the data. The resulting modules
have been then interfaced with proper test-benches to simu-

Table 3: Performance results obtained varying the latency of the external memory.
Experiment 2 cycles 5 cycles 10 cycles

Benchmark Case Latency Diff. (%) Latency Diff. (%) Latency Diff. (%)

MIPS M.1 12,950 - 17,159 - 24,174 -
M.2 12,950 0.00% 15,326 -10.68% 19,286 -20.22%

GSM
G.1 20,828 - 26,090 - 34,860 -
G.2 20,681 -0.71% 21,647 -17.03% 23,257 -33.28%
G.3 20,529 -1.44% 20,559 -21.20% 20,609 -40.88%

ADPCM A.1 95,570 - 157,217 - 259,962 -
A.2 95,458 -0.11% 156,355 -0.55% 257,850 -0.81%
A.3 107,819 +12.82% 136,508 -13.17% 184,323 -29.10%

late different delays for the external memories, ranging from
2 to 10 cycles in order to potentially model different external
memory architecture such as external buffers, caches, etc...
The resulting systems have been then simulated with Mentor
ModelSim SE 6.6d [2] to obtain the number of clock cycles
required to complete the execution. Then, the accelerators
have been also synthesized with Xilinx ISE ver. 12.3 [3] to
obtain an estimation of resource requirements.

For the MIPS, we would like to verify the impact of mov-
ing the test program from the external memory to the in-
ternal one. Conceptually, in the former case, namely M.1,
the resulting MIPS implementation is able to execute any
application, provided that it is loaded in the corresponding
external memory, starting from the same location. In the
latter one, namely M.2, the MIPS is able to execute only
the specified program, stored into the internal memory, but
it does not require to access the external one, with benefits
from the performance point of view. We performed three ex-
periments for the GSM. In the first one (G.1), we allocated
all the data arrays on external memories. In the second one
(G.2), we allocated into internal memories only the arrays
containing the final results, while the input data are stored
into the external memory. In the last experiment (G.3), we
evaluated the opposite situation, where the input data have
been stored into internal memories, while output data have
been allocated into the external memory. Considering the
ADPCM, we performed three different experiments also in
this case. In the first one (A.1), all memory variables are
allocated into the external memory. On the contrary, in the
second one (A.2), all the data referring to input and out-
put are allocated into internal memories, while, in the last
experiment (A.3), we left these data in the external mem-
ory, but we allocated internally the value referring to the
constant tables used for the computation. It is worth not-
ing that all these experiments have been performed just by
putting pragmas on the variables, in order to move them
from/to the external memory.

The results of the different experiments are reported in
Table 3 and Table 4, in terms of clock cycles and require-
ments of resources, respectively. Note that, in these tables,
we reported the percentage difference of each value with re-
spect to the corresponding x.1, considered as reference. Ta-
ble 3 shows that, as expected, limiting the number of vari-
ables allocated in external memories improves the perfor-
mance, especially when the cost of accessing them becomes
significant. For example, in the last experiment of the GSM
benchmark, we are able to reduce the number of cycles by
more than 40%. On the other hand, when the cost is com-
parable with the internal memories, an efficient scheduling
of the operations becomes crucial and, in some cases (e.g.,

Table 4: Estimation of resource requirements to im-
plement the different solutions.

Experiment LUT/FF pairs Allocated bytes
Benchmark Case (#) Diff. (%) Int. Ext

MIPS
M.1 5,859 - 0 624
M.2 5,722 -2.24% 176 448

GSM
G.1 18,158 - 390 948
G.2 18,655 +2.74% 442 896
G.3 18,500 +1.88% 1,066 272

ADPCM A.1 21,145 - 0 3,660
A.2 21,471 +1.54% 1,200 2,460
A.3 25,065 +18.54% 1,704 1,956

A.3), moving data to internal memories leads to decrease
the performance. On the other hand, increasing the latency
of the external memory, significant performance improve-
ments can be still obtained. It is also interesting to note
the results of G.3. In this case, moving the input data to
local memories allows to dramatically reduce the number of
memory accesses. As a result, the execution remains almost
constant also varying the latency of the external memory,
while, in the corresponding reference solution, that is G.1,
the execution time almost doubles.

Table 4 shows the resources required to implement the re-
sulting architectures on the target device, in terms of LUT
Flip Flop pairs and bytes allocated in the memories. The
results show that the area overhead due to internal memo-
ries is negligible. In fact, these memories are implemented
as BRAMs and, thus, we only require the logic to correctly
drive the signals, but it is limited with respect to the require-
ments for the data-path resources. Concerning the case A.3,
we need to consider that it corresponds to the scheduling
solution which leaded to obtain a performance degradation.
For this reason, we can expect that this area overhead can
correspond, in the same way, to a suboptimal allocation of
data-path resources (e.g., functional units, registers and in-
terconnection elements).

On the other hand, the requirements in terms of BRAMs
(less then 2Kbytes in the worst case, that is A.3) can be
effectively satisfied by modern FPGA devices. In fact, for
example, the Xilinx Virtex-5 devices contain 4-Kbytes of
BRAMs [4].

We can thus conclude that the proposed methodology can
be effectively adopted to evaluate the effects of moving data
from external to internal memories by adopting appropriate
annotations on the source code. Moreover, the resulting ar-
chitectures is effectively able to implement the resulting de-
cisions and can be efficiently implemented on modern FPGA
devices, where three-states are not currently supported.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an architecture and a design

methodology to efficiently implement memory accesses in
HLS, starting from pure C code. The proposed approach
is able to identify actual memory elements and to integrate
designer’s decisions, provided by source code annotations.
The methodology has been validated on different real-life
test cases, showing how it is possible to evaluate the effects
of allocating the data either in internal or external memories,
supporting a wide range of C constructs.

Currently, we are going to extend this methodology with
more efficient solutions for the allocation of variables, able
to automatically re-organize the memory allocation in order
to further improve the resulting architectures and to analyze
the effects of interfacing such cores with microprocessors in
complex systems-on-chip. Moreover, we are also interested
to propose effective scheduling solutions to take into account
the allocation of variables and thus further improve the per-
formance.

7. REFERENCES
[1] GCC - GNU Compiler Collection. http://gcc.gnu.org.

[2] Mentor ModelSim SE 6.6d User Guide.
http://www.mentor.com.

[3] Xilinx ISE Design Suite 12.3 User Guide.
http://www.xilinx.com.

[4] Xilinx Virtex-5 FPGA.
http://www.xilinx.com/products/virtex5/.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang,
A. Kammoona, J. H. Anderson, S. Brown, and
T. Czajkowski. LegUp: high-level synthesis for
FPGA-based processor/accelerator systems. In
Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, FPGA
’11, pages 33–36, New York, NY, USA, 2011. ACM.

[6] G. De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, 1994.

[7] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark:
a high-level synthesis framework for applying
parallelizing compiler transformations. Proceedings of
the 16th International Conference on VLSI Design,
pages 461–466, 4-8 Jan. 2003.

[8] Y. Hara, H. Tomiyama, S. Honda, and H. Takada.
Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based
high-level synthesis. Journal of Information
Processing, 17:242–254, 2009.

[9] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao,
Justiani, and B. Sridharan. Designing the McCAT
Compiler Based on a Family of Structured
Intermediate Representations. In 5th International
Workshop on Languages and Compilers for Parallel
Computing, pages 406–420, 1993.

[10] C. Huang, S. Ravi, A. Raghunathan, and N. Jha.
Generation of distributed logic-memory architectures
through high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 24(11):1694 – 1711, Nov. 2005.

[11] H. Lange, T. Wink, and A. Koch. Marc ii: A
parametrized speculative multi-ported memory
subsystem for reconfigurable computers. In
Proceedings of the conference on Design, automation
and test in Europe, DATE ’11, 2011.

[12] M. Miranda, F. Catthoor, M. Janssen, and
H. De Man. High-level address optimization and
synthesis techniques for data-transfer-intensive
applications. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 6(4):677 –686, Dec 1998.

[13] P. Panda, N. Dutt, and A. Nicolau. Exploiting off-chip
memory access modes in high-level synthesis. In
IEEE/ACM International Conference on
Computer-Aided Design, pages 333 –340, November
1997.

[14] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert,
E. Brockmeyer, C. Kulkarni, A. Vandercappelle, and
P. G. Kjeldsberg. Data and memory optimization
techniques for embedded systems. ACM Transactions
on Design Automation of Electronic Systems,
6:149–206, April 2001.

[15] P. R. Panda, N. D. Dutt, and A. Nicolau.
Architectural exploration and optimization of local
memory in embedded systems. In Proceedings of the
10th international symposium on System synthesis,
ISSS ’97, pages 90–97, Washington, DC, USA, 1997.
IEEE Computer Society.

[16] L. Semeria and G. De Micheli. Resolution,
optimization, and encoding of pointer variables for the
behavioral synthesis from C. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 20(2):213 –233, February 2001.

[17] J. Zhu and D. D. Gajski. A unified formal model of
ISA and FSMD. In Proceedings of the seventh
international workshop on Hardware/software
codesign, CODES ’99, pages 121–125, New York, NY,
USA, 1999. ACM.

